Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Controlled growth of transition metal dichalcogenide monolayers using Knudsen-type effusion cells for the precursors

2019, George, Antony, Neumann, Christof, Kaiser, David, Mupparapu, Rajeshkumar, Lehnert, Tibor, Hübner, Uwe, Tang, Zian, Winter, Andreas, Kaiser, Ute, Staude, Isabelle, Turchanin, Andrey

Controlling the flow rate of precursors is essential for the growth of high quality monolayer single crystals of transition metal dichalcogenides (TMDs) by chemical vapor deposition. Thus, introduction of an excess amount of the precursors affects reproducibility of the growth process and results in the formation of TMD multilayers and other unwanted deposits. Here we present a simple method for controlling the precursor flow rates using the Knudsen-type effusion cells. This method results in a highly reproducible growth of large area and high density TMD monolayers. The size of the grown crystals can be adjusted between 10 and 200 μm. We characterized the grown MoS2 and WS2 monolayers by optical, atomic force and transmission electron microscopies as well as by x-ray photoelectron, Raman and photoluminescence spectroscopies, and by electrical transport measurements showing their high optical and electronic quality based on the single crystalline nature.

Loading...
Thumbnail Image
Item

1D p–n Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by One-Pot Chemical Vapor Deposition Synthesis

2021, Najafidehaghani, Emad, Gan, Ziyang, George, Antony, Lehnert, Tibor, Ngo, Gia Quyet, Neumann, Christof, Bucher, Tobias, Staude, Isabelle, Kaiser, David, Vogl, Tobias, Hübner, Uwe, Kaiser, Ute, Eilenberger, Falk, Turchanin, Andrey

Lateral heterostructures of dissimilar monolayer transition metal dichalcogenides provide great opportunities to build 1D in-plane p–n junctions for sub-nanometer thin low-power electronic, optoelectronic, optical, and sensing devices. Electronic and optoelectronic applications of such p–n junction devices fabricated using a scalable one-pot chemical vapor deposition process yielding MoSe2-WSe2 lateral heterostructures are reported here. The growth of the monolayer lateral heterostructures is achieved by in situ controlling the partial pressures of the oxide precursors by a two-step heating protocol. The grown lateral heterostructures are characterized structurally and optically using optical microscopy, Raman spectroscopy/microscopy, and photoluminescence spectroscopy/microscopy. High-resolution transmission electron microscopy further confirms the high-quality 1D boundary between MoSe2 and WSe2 in the lateral heterostructure. p–n junction devices are fabricated from these lateral heterostructures and their applicability as rectifiers, solar cells, self-powered photovoltaic photodetectors, ambipolar transistors, and electroluminescent light emitters are demonstrated. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

High-bit rate ultra-compact light routing with mode-selective on-chip nanoantennas

2017, Guo, Rui, Decker, Manuel, Setzpfandt, Frank, Gai, Xin, Choi, Duk-Yong, Kiselev, Roman, Chipouline, Arkadi, Staude, Isabelle, Pertsch, Thomas, Neshev, Dragomir N.

Optical nanoantennas provide a promising pathway toward advanced manipulation of light waves, such as directional scattering, polarization conversion, and fluorescence enhancement. Although these functionalities were mainly studied for nanoantennas in free space or on homogeneous substrates, their integration with optical waveguides offers an important “wired” connection to other functional optical components. Taking advantage of the nanoantenna’s versatility and unrivaled compactness, their imprinting onto optical waveguides would enable a marked enhancement of design freedom and integration density for optical on-chip devices. Several examples of this concept have been demonstrated recently. However, the important question of whether nanoantennas can fulfill functionalities for high-bit rate signal transmission without degradation, which is the core purpose of many integrated optical applications, has not yet been experimentally investigated. We introduce and investigate directional, polarization-selective, and mode-selective on-chip nanoantennas integrated with a silicon rib waveguide. We demonstrate that these nanoantennas can separate optical signals with different polarizations by coupling the different polarizations of light vertically to different waveguide modes propagating into opposite directions. As the central result of this work, we show the suitability of this concept for the control of optical signals with ASK (amplitude-shift keying) NRZ (nonreturn to zero) modulation [10 Gigabit/s (Gb/s)] without significant bit error rate impairments. Our results demonstrate that waveguide-integrated nanoantennas have the potential to be used as ultra-compact polarization-demultiplexing on-chip devices for high–bit rate telecommunication applications.