Search Results

Now showing 1 - 3 of 3
  • Item
    On-Chip Dispersion Measurement of the Quadratic Electro-Optic Effect in Nonlinear Optical Polymers Using a Photonic Integrated Circuit Technology
    (New York, NY : IEEE, 2019) Steglich, Patrick; Villringer, Claus; Dietzel, Birgit; Mai, Christian; Schrader, Sigurd; Casalboni, Mauro; Mai, Andreas
    A novel method to determine the dispersion of the quadratic electro-optic effect in nonlinear optical materials by using a silicon-on-insulator microring resonator is presented. The microring consists of a silicon slot waveguide enabling large dc electric field strength at low applied voltages. The dispersion of third-order hyperpolarizability of a linear conjugated dye is approximated by using a two-level model for the off-resonant spectral region. As an example, the dispersion of the resonance wavelength of the resonator filled with a dye doped polymer was measured in dependence of the applied dc voltage. The polymer was poly (methylmethacrylate) doped with 5 wt% disperse red 1 (DR1), and the measurements have been carried out at the telecommunication wavelength band around 1550 nm (optical C-band). The described measurements represent a new technique to determine the dispersion of the third-order susceptibility and molecular hyperpolarizability of the material filled into the slot of the ring-resonator. © 2019 IEEE.
  • Item
    CMOS-Compatible Silicon Photonic Sensor for Refractive Index Sensing Using Local Back-Side Release
    (New York, NY : IEEE, 2020) Steglich, Patrick; Bondarenko, Siegfried; Mai, Christian; Paul, Martin; Weller, Michael G.; Mai, Andreas
    Silicon photonic sensors are promising candidates for lab-on-a-chip solutions with versatile applications and scalable production prospects using complementary metal-oxide semiconductor (CMOS) fabrication methods. However, the widespread use has been hindered because the sensing area adjoins optical and electrical components making packaging and sensor handling challenging. In this work, a local back-side release of the photonic sensor is employed, enabling a separation of the sensing area from the rest of the chip. This approach allows preserving the compatibility of photonic integrated circuits in the front-end of line and metal interconnects in the back-end of line. The sensor is based on a micro-ring resonator and is fabricated on wafer-level using a CMOS technology. We revealed a ring resonator sensitivity for homogeneous sensing of 106 nm/RIU. © 1989-2012 IEEE.
  • Item
    Novel UV-transparent 2-component polyurethane resin for chip-on-board LED micro lenses
    (Washington, DC : OSA, 2020) Bauer, Joachim; Gutke, Marko; Heinrich, Friedhelm; Edling, Matthias; Stoycheva, Vesela; Kaltenbach, Alexander; Burkhardt, Martin; Gruenefeld, Martin; Gamp, Matthias; Gerhard, Christoph; Steglich, Patrick; Steffen, Sebastian; Herzog, Michael; Dreyer, Christian; Schrader, Sigurd
    In this work we present a novel optical polymer system based on polyurethane elastomer components, which combines excellent UV transparency with high thermal stability, good hardness, high surface tension and long pot life. The material looks very promising for encapsulation and microlensing applications for chip-on-board (CoB) light-emitting diodes (LED). The extinction coefficient k, refractive index n, and bandgap parameters were derived from transmission and reflection measurements in a wavelength range of 200-890 nm. Thermogravimetry and differential scanning calorimetry were used to provide glass transition and degradation temperatures. The surface tension was determined by means of contact angle measurements. As proof of concept, a commercial InGaN-CoB-LED is used to demonstrate the suitability of the new material for the production of microlenses. © 2020 Optical Society of America.