Search Results

Now showing 1 - 3 of 3
  • Item
    Deep neural networks for classifying complex features in diffraction images
    (Woodbury, NY : Inst., 2019) Zimmermann, Julian; Langbehn, Bruno; Cucini, Riccardo; Di Fraia, Michele; Finetti, Paola; LaForge, Aaron C.; Nishiyama, Toshiyuki; Ovcharenko, Yevheniy; Piseri, Paolo; Plekan, Oksana; Prince, Kevin C.; Stienkemeier, Frank; Ueda, Kiyoshi; Callegari, Carlo; Möller, Thomas; Rupp, Daniela
    Intense short-wavelength pulses from free-electron lasers and high-harmonic-generation sources enable diffractive imaging of individual nanosized objects with a single x-ray laser shot. The enormous data sets with up to several million diffraction patterns present a severe problem for data analysis because of the high dimensionality of imaging data. Feature recognition and selection is a crucial step to reduce the dimensionality. Usually, custom-made algorithms are developed at a considerable effort to approximate the particular features connected to an individual specimen, but because they face different experimental conditions, these approaches do not generalize well. On the other hand, deep neural networks are the principal instrument for today's revolution in automated image recognition, a development that has not been adapted to its full potential for data analysis in science. We recently published [Langbehn et al., Phys. Rev. Lett. 121, 255301 (2018)] the application of a deep neural network as a feature extractor for wide-angle diffraction images of helium nanodroplets. Here we present the setup, our modifications, and the training process of the deep neural network for diffraction image classification and its systematic bench marking. We find that deep neural networks significantly outperform previous attempts for sorting and classifying complex diffraction patterns and are a significant improvement for the much-needed assistance during postprocessing of large amounts of experimental coherent diffraction imaging data.
  • Item
    Phase cycling of extreme ultraviolet pulse sequences generated in rare gases
    ([London] : IOP, 2020) Wituschek, Andreas; Kornilov, Oleg; Witting, Tobias; Maikowski, Laura; Stienkemeier, Frank; Vrakking, Marc J.J.; Bruder, Lukas
    The development of schemes for coherent nonlinear time-domain spectroscopy in the extreme-ultraviolet regime (XUV) has so far been impeded by experimental difficulties that arise at these short wavelengths. In this work we present a novel experimental approach, which facilitates the timing control and phase cycling of XUV pulse sequences produced by harmonic generation in rare gases. The method is demonstrated for the generation and high spectral resolution characterization of narrow-bandwidth harmonics (˜14 eV) in argon and krypton. Our technique simultaneously provides high phase stability and a pathway-selective detection scheme for nonlinear signals - both necessary prerequisites for all types of coherent nonlinear spectroscopy. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
  • Item
    Three-Dimensional Shapes of Spinning Helium Nanodroplets
    (College Park, Md. : APS, 2018) Langbehn, Bruno; Sander, Katharina; Ovcharenko, Yevheniy; Peltz, Christian; Clark, Andrew; Coreno, Marcello; Cucini, Riccardo; Drabbels, Marcel; Finetti, Paola; Di Fraia, Michele; Giannessi, Luca; Grazioli, Cesare; Iablonskyi, Denys; LaForge, Aaron C.; Nishiyama, Toshiyuki; Oliver Álvarez de Lara, Verónica; Piseri, Paolo; Plekan, Oksana; Ueda, Kiyoshi; Zimmermann, Julian; Prince, Kevin C.; Stienkemeier, Frank; Callegari, Carlo; Fennel, Thomas; Rupp, Daniela; Möller, Thomas
    A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion has been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles using intense extreme ultraviolet light pulses from the FERMI free-electron laser. Distinct asymmetric features in the wide-angle diffraction patterns enable the unique and systematic identification of the three-dimensional droplet shapes. The analysis of a large data set allows us to follow the evolution from axisymmetric oblate to triaxial prolate and two-lobed droplets. We find that the shapes of spinning superfluid helium droplets exhibit the same stages as classical rotating droplets while the previously reported metastable, oblate shapes of quantum droplets are not observed. Our three-dimensional analysis represents a valuable landmark for clarifying the interrelation between morphology and superfluidity on the nanometer scale.