Search Results

Now showing 1 - 2 of 2
  • Item
    On the evaluation of the phase relation between temperature and wind tides based on ground-based measurements and reanalysis data in the middle atmosphere
    (Göttingen : Copernicus GmbH, 2019) Baumgarten, K.; Stober, G.
    The variability in the middle atmosphere is driven by a variety of waves covering different spatial and temporal scales. We diagnose the variability in the thermal tides due to changes in the background wind by an adaptive spectral filter, which takes the intermittency of tides into account. We apply this diagnostic to temperature observations from daylight-capable lidar at midlatitudes (54° N, 12° E) as well as to reanalysis data of horizontal winds from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). These reanalysis data provide additional wind information in the altitude range between 30 and 70 km at the location of the lidar as well as on a global scale. Using the global data gives information on the tidal modes seen at one location. A comparison of the temperature and wind information affirms whether there is a fixed phase relation of the tidal waves in the temperature and the wind data. We found that in general the local tidal signatures are dominated by migrating tidal modes, and the signature is weaker in temperatures than in winds. While the meridional wind tide leads the zonal wind tide by 90°, the phase relation between the temperature and the wind tide is more complex. At certain altitudes the temperature tide follows the zonal wind tide. This knowledge helps in improving the interpretation of the seasonal variation in tides from different observables, especially when only data from single locations are used. The findings provide additional information about the phase stability of tidal waves, and the results clearly show the importance of a measurement acquisition on a routine basis with high temporal and spatial resolution. © 2019 Author(s).
  • Item
    Mesospheric anomalous diffusion during noctilucent cloud scenarios
    (Göttingen : Copernicus GmbH, 2019) Laskar, F.I.; Stober, G.; Fiedler, J.; Oppenheim, M.M.; Chau, J.L.; Pallamraju, D.; Pedatella, N.M.; Tsutsumi, M.; Renkwitz, T.
    The Andenes specular meteor radar shows meteor trail diffusion rates increasing on average by about 10% at times and locations where a lidar observes noctilucent clouds (NLCs). This high-latitude effect has been attributed to the presence of charged NLC after exploring possible contributions from thermal tides. To make this claim, the current study evaluates data from three stations at high, middle, and low latitudes for the years 2012 to 2016 to show that NLC influence on the meteor trail diffusion is independent of thermal tides. The observations also show that the meteor trail diffusion enhancement during NLC cover exists only at high latitudes and near the peaks of NLC layers. This paper discusses a number of possible explanations for changes in the regions with NLCs and leans towards the hypothesis that the relative abundance of background electron density plays the leading role. A more accurate model of the meteor trail diffusion around NLC particles would help researchers determine mesospheric temperature and neutral density profiles from meteor radars at high latitudes. © 2019 Author(s).