Search Results

Now showing 1 - 4 of 4
  • Item
    Seasonal variability of atmospheric tides in the mesosphere and lower thermosphere: Meteor radar data and simulations
    (München : European Geopyhsical Union, 2018) Pokhotelov, Dimitry; Becker, Erich; Stober, Gunter; Chau, Jorge L.
    Thermal tides play an important role in the global atmospheric dynamics and provide a key mechanism for the forcing of thermosphere–ionosphere dynamics from below. A method for extracting tidal contributions, based on the adaptive filtering, is applied to analyse multi-year observations of mesospheric winds from ground-based meteor radars located in northern Germany and Norway. The observed seasonal variability of tides is compared to simulations with the Kühlungsborn Mechanistic Circulation Model (KMCM). It is demonstrated that the model provides reasonable representation of the tidal amplitudes, though substantial differences from observations are also noticed. The limitations of applying a conventionally coarse-resolution model in combination with parametrisation of gravity waves are discussed. The work is aimed towards the development of an ionospheric model driven by the dynamics of the KMCM.
  • Item
    Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, Norway
    (München : European Geopyhsical Union, 2016) Li, Qiang; Rapp, Markus; Schrön, Anne; Schneider, Andreas; Stober, Gunter
    We present the derivation of turbulent energy dissipation rate ε from a total of 522 days of observations with the Middle Atmosphere Alomar Radar SYstem (MAARSY) mesosphere–stratosphere–troposphere (MST) radar running tropospheric experiments during the period of 2010–2013 as well as with balloon-borne radiosondes based on a campaign in the summer 2013. Spectral widths are converted to ε after the removal of the broadening effects due to the finite beam width of the radar. With the simultaneous in situ measurements of ε with balloon-borne radiosondes at the MAARSY radar site, we compare the ε values derived from both techniques and reach an encouraging agreement between them. Using all the radar data available, we present a preliminary climatology of atmospheric turbulence in the UTLS (upper troposphere and lower stratosphere) region above the MAARSY site showing a variability of more than 5 orders of magnitude inherent in turbulent energy dissipation rates. The derived ε values reveal a log-normal distribution with a negative skewness, and the ε profiles show an increase with height which is also the case for each individual month. Atmospheric turbulence based on our radar measurements reveals a seasonal variation but no clear diurnal variation in the UTLS region. Comparison of ε with the gradient Richardson number Ri shows that only 1.7 % of all the data with turbulence occur under the condition of Ri < 1 and that the values of ε under the condition of Ri < 1 are significantly larger than those under Ri > 1. Further, there is a roughly negative correlation between ε and Ri that is independent of the scale dependence of Ri. Turbulence under active dynamical conditions (velocity of horizontal wind U > 10 m s−1) is significantly stronger than under quiet conditions (U < 10 m s−1). Last but not least, the derived ε values are compared with the corresponding vertical shears of background wind velocity showing a linear relation with a corresponding correlation coefficient r = 58 % well above the 99.9 % significance level. This implies that wind shears play an important role in the turbulence generation in the troposphere and lower stratosphere (through the Kelvin–Helmholtz instability).
  • Item
    A comparison of 11-year mesospheric and lower thermospheric winds determined by meteor and MF radar at 69 ° N
    (München : European Geopyhsical Union, 2017) Wilhelm, Sven; Stober, Gunter; Chau, Jorge L.
    The Andenes Meteor Radar (MR) and the Saura Medium Frequency (MF) Radar are located in northern Norway (69° N, 16° E) and operate continuously to provide wind measurements of the mesosphere and lower thermosphere (MLT) region. We compare the two systems to find potential biases between the radars and combine the data from both systems to enhance altitudinal coverage between 60 and 110 km. The systems have altitudinal overlap between 78 and 100 km at which we compare winds and tides on the basis of hourly winds with 2 km altitude bins. Our results indicate reasonable agreement for the zonal and meridional wind components between 78 and 92 km. An exception to this is the altitude range below 84 km during the summer, at which the correlation decreases. We also compare semidiurnal and diurnal tides according to their amplitudes and phases with good agreement below 90 km for the diurnal and below 96 km for the semidiurnal tides. Based on these findings we have taken the MR data as a reference. By comparing the MF and MR winds within the overlapping region, we have empirically estimated correction factors to be applied to the MF winds. Existing gaps in that data set will be filled with weighted MF data. This weighting is done due to underestimated wind values of the MF compared to the MR, and the resulting correction factors fit to a polynomial function of second degree within the overlapping area. We are therefore able to construct a consistent and homogenous wind from approximately 60 to 110 km.
  • Item
    Observation of Kelvin–Helmholtz instabilities and gravity waves in the summer mesopause above Andenes in Northern Norway
    (München : European Geopyhsical Union, 2018) Stober, Gunter; Sommer, Svenja; Schult, Carsten; Latteck, Ralph; Chau, Jorge L.
    We present observations obtained with the Middle Atmosphere Alomar Radar System (MAARSY) to investigate short-period wave-like features using polar mesospheric summer echoes (PMSEs) as a tracer for the neutral dynamics. We conducted a multibeam experiment including 67 different beam directions during a 9-day campaign in June 2013. We identified two Kelvin–Helmholtz instability (KHI) events from the signal morphology of PMSE. The MAARSY observations are complemented by collocated meteor radar wind data to determine the mesoscale gravity wave activity and the vertical structure of the wind field above the PMSE. The KHIs occurred in a strong shear flow with Richardson numbers Ri <0.25. In addition, we observed 15 wave-like events in our MAARSY multibeam observations applying a sophisticated decomposition of the radial velocity measurements using volume velocity processing. We retrieved the horizontal wavelength, intrinsic frequency, propagation direction, and phase speed from the horizontally resolved wind variability for 15 events. These events showed horizontal wavelengths between 20 and 40km, vertical wavelengths between 5 and 10km, and rather high intrinsic phase speeds between 45 and 85ms−1 with intrinsic periods of 5–10min.