Search Results

Now showing 1 - 3 of 3
  • Item
    Non-isothermal kinetic analysis of the crystallization of metallic glasses using the master curve method
    (Basel : MDPI, 2011) Torrens-Serra, Joan; Venkataraman, Shankar; Stoica, Mihai; Kuehn, Uta; Roth, Stefan; Eckert, Jürgen
    The non-isothermal transformation rate curves of metallic glasses are analyzed with the Master Curve method grounded in the Kolmogorov-Johnson-Mehl-Avrami theory. The method is applied to the study of two different metallic glasses determining the activation energy of the transformation and the experimental kinetic function that is analyzed using Avrami kinetics. The analysis of the crystallization of Cu47Ti33Zr11Ni8Si1 metallic glassy powders gives Ea = 3.8 eV, in good agreement with the calculation by other methods, and a transformation initiated by an accelerating nucleation and diffusion-controlled growth. The other studied alloy is a Nanoperm-type Fe77Nb7B15Cu1 metallic glass with a primary crystallization of bcc-Fe. An activation energy of Ea = 5.7 eV is obtained from the Master Curve analysis. It is shown that the use of Avrami kinetics is not able to explain the crystallization mechanisms in this alloy giving an Avrami exponent of n = 1.
  • Item
    Structural and mechanical characterization of Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk metallic glass
    (Basel : MDPI, 2011) Prashanth, Konda G.; Scudino, Sergio; Khoshkhoo, Mohsen Samadi; Surreddi, Kumar B.; Stoica, Mihai; Vaughan, Gavin; Eckert, Jürgen
    Thermal stability, structure and mechanical properties of the multi-component Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk metallic glass have been studied in detail. The glassy material displays good thermal stability against crystallization and a fairly large supercooled liquid region of 52 K. During heating, the alloy transforms into a metastable icosahedral quasicrystalline phase in the first stage of crystallization. At high temperatures, the quasicrystalline phase undergoes a transformation to form tetragonal and cubic NiZr2-type phases. Room-temperature compression tests of the as-cast sample show good mechanical properties, namely, high compressive strength of about 1,630 MPa and fracture strain of 3.3%. This is combined with a density of 6.32 g/cm3 and values of Poisson’s ratio and Young’s modulus of 0.377 and 77 GPa, respectively. The mechanical properties of the glass can be further improved by cold rolling. The compressive strength rises to 1,780 MPa and the fracture strain increases to 8.3% for the material cold-rolled to a diameter reduction of 10%.
  • Item
    New Cu-free ti-based composites with residual amorphous matrix
    (Basel : MDPI, 2016) Nicoara, Mircea; Locovei, Cosmin; Serban, Viorel Aurel; Parthiban, R.; Calin, Mariana; Stoica, Mihai
    Titanium-based bulk metallic glasses (BMGs) are considered to have potential for biomedical applications because they combine favorable mechanical properties and good biocompatibility. Copper represents the most common alloying element, which provides high amorphization capacity, but reports emphasizing cytotoxic effects of this element have risen concerns about possible effects on human health. A new copper-free alloy with atomic composition Ti42Zr10Pd14Ag26Sn8, in which Cu is completely replaced by Ag, was formulated based on Morinaga’s d-electron alloy design theory. Following this theory, the actual amount of alloying elements, which defines the values of covalent bond strength Bo and d-orbital energy Md, situates the newly designed alloy inside the BMG domain. By mean of centrifugal casting, cylindrical rods with diameters between 2 and 5 mm were fabricated from this new alloy. Differential scanning calorimetry (DSC) and X-rays diffraction (XRD), as well as microstructural analyses using optical and scanning electron microscopy (OM/SEM) revealed an interesting structure characterized by liquid phase-separated formation of crystalline Ag, as well as metastable intermetallic phases embedded in residual amorphous phases.