Search Results

Now showing 1 - 2 of 2
  • Item
    2-LED-ÎĽspectrophotometer for rapid on-site detection of pathogens using noble-metal nanoparticle-based colorimetric assays
    (Basel : MDPI, 2020) Reuter, Cornelia; Urban, Matthias; Arnold, Manuel; Stranik, Ondrej; Csáki, Andrea; Fritzsche, Wolfgang
    Novel point-of-care compatible methods such as colorimetric assays have become increasingly important in the field of early pathogen detection. A simple and hand-held prototype device for carrying out DNA-amplification assay based on plasmonic nanoparticles in the colorimetric detection is presented. The low-cost device with two channels (sample and reference) consists of two spectrally different light emitting diodes (LEDs) for detection of the plasmon shift. The color change of the gold-nanoparticle-DNA conjugates caused by a salt-induced aggregation test is examined in particular. A specific and sensitive detection of the waterborne human pathogen Legionella pneumophila is demonstrated. This colorimetric assay, with a simple assay design and simple readout device requirements, can be monitored in real-time on-site. © 2020 by the authors.
  • Item
    A new strategy for silver deposition on Au nanoparticles with the use of peroxidase-mimicking DNAzyme monitored by Localized Surface Plasmon Resonance technique
    (Basel : MDPI, 2017) Kosman, Joanna; Jatschka, Jacqueline; Csáki, Andrea; Fritzsche, Wolfgang; Juskowiak, Bernard; Stranik, Ondrej
    Peroxidase-mimicking DNAzyme was applied as a catalyst of silver deposition on gold nanoparticles. This DNAzyme is formed when hemin binds to the G-quadruplex-forming DNA sequence. Such a system is able to catalyze a redox reaction with a one- or two-electron transfer. The process of silver deposition was monitored via a localized surface plasmon resonance technique (LSPR), which allows one to record scattering spectrum of a single nanoparticle. Our study showed that DNAzyme is able to catalyze silver deposition. The AFM experiments proved that DNAzyme induced the deposition of silver shells of approximately 20 nm thickness on Au nanoparticles (AuNPs). Such an effect is not observed when hemin is absent in the system. However, we noticed non-specific binding of hemin to the capture oligonucleotides on a gold NP probe that also induced some silver deposition, even though the capture probe was unable to form G-quadruplex. Analysis of SEM images indicated that the surface morphology of the silver layer deposited by DNAzyme is different from that obtained for hemin alone. The proposed strategy of silver layer synthesis on gold nanoparticles catalyzed by DNAzyme is an innovative approach and can be applied in bioanalysis (LSPR, electrochemistry) as well as in material sciences.