Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Size-resolved and bulk activation properties of aerosols in the North China Plain

2011, Deng, Z.Z., Zhao, C.S., Ma, N., Liu, P.F., Ran, L., Xu, W.Y., Chen, J., Liang, Z., Liang, S., Huang, M.Y., Ma, X.C., Zhang, Q., Quan, J.N., Yan, P., Henning, S., Mildenberger, K., Sommerhage, E., Schäfer, M., Stratmann, F., Wiedensohler, A.

Size-resolved and bulk activation properties of aerosols were measured at a regional/suburban site in the North China Plain (NCP), which is occasionally heavily polluted by anthropogenic aerosol particles and gases. A Cloud Condensation Nuclei (CCN) closure study is conducted with bulk CCN number concentration (NCCN) and calculated CCN number concentration based on the aerosol number size distribution and size-resolved activation properties. The observed CCN number concentration (NCCN-obs) are higher than those observed in other locations than China, with average NCCN-obs of roughly 2000, 3000, 6000, 10 000 and 13 000 cm−3 at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.70%, respectively. An inferred critical dry diameter (Dm) is calculated based on the NCCN-obs and aerosol number size distribution assuming homogeneous chemical composition. The inferred cut-off diameters are in the ranges of 190–280, 160–260, 95–180, 65–120 and 50–100 nm at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.7%, with their mean values 230.1, 198.4, 128.4, 86.4 and 69.2 nm, respectively. Size-resolved activation measurements show that most of the 300 nm particles are activated at the investigated supersaturations, while almost no particles of 30 nm are activated even at the highest supersaturation of 0.72%. The activation ratio increases with increasing supersaturation and particle size. The slopes of the activation curves for ambient aerosols are not as steep as those observed in calibrations with ammonium sulfate suggesting that the observed aerosols is an external mixture of more hygroscopic and hydrophobic particles. The calculated CCN number concentrations (NCCN-calc) based on the size-resolved activation ratio and aerosol number size distribution correlate well with the NCCN-obs, and show an average overestimation of 19%. Sensitivity studies of the CCN closure show that the NCCN at each supersaturation is well predicted with the campaign average of size-resolved activation curves. These results indicate that the aerosol number size distribution is critical in the prediction of possible CCN. The CCN number concentration can be reliably estimated using time-averaged, size-resolved activation efficiencies without accounting for the temporal variations.

Loading...
Thumbnail Image
Item

Aerosol optical properties in the North China Plain during HaChi campaign: An in-situ optical closure study

2011, Ma, N., Zhao, C.S., Nowak, A., Müller, T., Pfeifer, S., Cheng, Y.F., Deng, Z.Z., Liu, P.F., Xu, W.Y., Ran, L., Yan, P., Göbel, T., Hallbauer, E., Mildenberger, K., Henning, S., Yu, J., Chen, L.L., Zhou, X.J., Stratmann, F., Wiedensohler, A.

The largest uncertainty in the estimation of climate forcing stems from atmospheric aerosols. In early spring and summer of 2009, two periods of in-situ measurements on aerosol physical and chemical properties were conducted within the HaChi (Haze in China) project at Wuqing, a town between Beijing and Tianjin in the North China Plain (NCP). Aerosol optical properties, including the scattering coefficient (σsp), the hemispheric back scattering coefficient (σbsp), the absorption coefficient (σap), as well as the single scattering albedo (ω), are presented. The diurnal and seasonal variations are analyzed together with meteorology and satellite data. The mean values of σsp, 550 nm of the dry aerosol in spring and summer are 280±253 and 379±251 Mm−1, respectively. The average σap for the two periods is respectively 47±38 and 43±27 Mm−1. The mean values of ω at the wavelength of 637 nm are 0.82±0.05 and 0.86±0.05 for spring and summer, respectively. The relative high levels of σsp and σbsp are representative of the regional aerosol pollution in the NCP. Pronounced diurnal cycle of $σsp, σap and ω are found, mainly influenced by the evolution of boundary layer and the accumulation of local emissions during nighttime. The pollutants transported from the southwest of the NCP are more significant than that from the two megacities, Beijing and Tianjin, in both spring and summer. An optical closure experiment is conducted to better understand the uncertainties of the measurements. Good correlations (R>0.98) are found between the values measured by the nephelometer and the values calculated with a modified Mie model. The Monte Carlo simulation shows an uncertainty of about 30 % for the calculations. Considering all possible uncertainties of measurements, calculated σsp and σbsp agree well with the measured values, indicating a stable performance of instruments and thus reliable aerosol optical data.