Search Results

Now showing 1 - 10 of 12
  • Item
    Alternative carbon price trajectories can avoid excessive carbon removal
    ([London] : Nature Publishing Group UK, 2021) Strefler, Jessica; Kriegler, Elmar; Bauer, Nico; Luderer, Gunnar; Pietzcker, Robert C.; Giannousakis, Anastasis; Edenhofer, Ottmar
    The large majority of climate change mitigation scenarios that hold warming below 2 °C show high deployment of carbon dioxide removal (CDR), resulting in a peak-and-decline behavior in global temperature. This is driven by the assumption of an exponentially increasing carbon price trajectory which is perceived to be economically optimal for meeting a carbon budget. However, this optimality relies on the assumption that a finite carbon budget associated with a temperature target is filled up steadily over time. The availability of net carbon removals invalidates this assumption and therefore a different carbon price trajectory should be chosen. We show how the optimal carbon price path for remaining well below 2 °C limits CDR demand and analyze requirements for constructing alternatives, which may be easier to implement in reality. We show that warming can be held at well below 2 °C at much lower long-term economic effort and lower CDR deployment and therefore lower risks if carbon prices are high enough in the beginning to ensure target compliance, but increase at a lower rate after carbon neutrality has been reached.
  • Item
    A multi-model assessment of the co-benefits of climate mitigation for global air quality
    (Bristol : IOP Publishing, 2016) Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Reis, Lara Aleluia; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.
    We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We include in our assessment, a range of alternative assumptions on the implementation of current and planned pollution control policies. The resulting air pollution emission ranges significantly extend those in the Representative Concentration Pathways. Climate mitigation policies complement current efforts on air pollution control through technology and fuel transformations in the energy system. A combination of stringent policies on air pollution control and climate change mitigation results in 40% of the global population exposed to PM levels below the WHO air quality guideline; with the largest improvements estimated for India, China, and Middle East. Our results stress the importance of integrated multisector policy approaches to achieve the Sustainable Development Goals.
  • Item
    Between Scylla and Charybdis: Delayed mitigation narrows the passage between large-scale CDR and high costs
    (Bristol : IOP Publishing, 2018) Strefler, Jessica; Bauer, Nico; Kriegler, Elmar; Popp, Alexander; Giannousakis, Anastasis; Edenhofer, Ottmar
    There are major concerns about the sustainability of large-scale deployment of carbon dioxide removal (CDR) technologies. It is therefore an urgent question to what extent CDR will be needed to implement the long term ambition of the Paris Agreement. Here we show that ambitious near term mitigation significantly decreases CDR requirements to keep the Paris climate targets within reach. Following the nationally determined contributions (NDCs) until 2030 makes 2 °C unachievable without CDR. Reducing 2030 emissions by 20% below NDC levels alleviates the trade-off between high transitional challenges and high CDR deployment. Nevertheless, transitional challenges increase significantly if CDR is constrained to less than 5 Gt CO2 a−1 in any year. At least 8 Gt CO2 a−1 CDR are necessary in the long term to achieve 1.5 °C and more than 15 Gt CO2 a−1 to keep transitional challenges in bounds.
  • Item
    Carbon dioxide removal technologies are not born equal
    (Bristol : IOP Publ., 2021-7-1) Strefler, Jessica; Bauer, Nico; Humpenöder, Florian; Klein, David; Popp, Alexander; Kriegler, Elmar
    Technologies for carbon dioxide removal (CDR) from the atmosphere have been recognized as an important part of limiting warming to well below 2 °C called for in the Paris Agreement. However, many scenarios so far rely on bioenergy in combination with carbon capture and storage as the only CDR technology. Various other options have been proposed, but have scarcely been taken up in an integrated assessment of mitigation pathways. In this study we analyze a comprehensive portfolio of CDR options in terms of their regional and temporal deployment patterns in climate change mitigation pathways and the resulting challenges. We show that any CDR option with sufficient potential can reduce the economic costs of achieving the 1.5 °C target substantially without increasing the temperature overshoot. CDR helps to reduce net CO2 emissions faster and achieve carbon neutrality earlier. The regional distribution of CDR deployment in cost-effective mitigation pathways depends on which options are available. If only enhanced weathering of rocks on croplands or re- and afforestation are available, Latin America and Asia cover nearly all of global CDR deployment. Besides fairness and sustainability concerns, such a regional concentration would require large international transfers and thus strong international institutions. In our study, the full portfolio scenario is the most balanced from a regional perspective. This indicates that different CDR options should be developed such that all regions can contribute according to their regional potentials.
  • Item
    Potential and costs of carbon dioxide removal by enhanced weathering of rocks
    (Bristol : IOP Publishing, 2018) Strefler, Jessica; Amann, Thorben; Bauer, Nico; Kriegler, Elmar; Hartmann, Jens
    The chemical weathering of rocks currently absorbs about 1.1 Gt CO2 a−1 being mainly stored as bicarbonate in the ocean. An enhancement of this slow natural process could remove substantial amounts of CO2 from the atmosphere, aiming to offset some unavoidable anthropogenic emissions in order to comply with the Paris Agreement, while at the same time it may decrease ocean acidification. We provide the first comprehensive assessment of economic costs, energy requirements, technical parameterization, and global and regional carbon removal potential. The crucial parameters defining this potential are the grain size and weathering rates. The main uncertainties about the potential relate to weathering rates and rock mass that can be integrated into the soil. The discussed results do not specifically address the enhancement of weathering through microbial processes, feedback of geogenic nutrient release, and bioturbation. We do not only assess dunite rock, predominantly bearing olivine (in the form of forsterite) as the mineral that has been previously proposed to be best suited for carbon removal, but focus also on basaltic rock to minimize potential negative side effects. Our results show that enhanced weathering is an option for carbon dioxide removal that could be competitive already at 60 US $ t−1 CO2 removed for dunite, but only at 200 US $ t−1 CO2 removed for basalt. The potential carbon removal on cropland areas could be as large as 95 Gt CO2 a−1 for dunite and 4.9 Gt CO2 a−1 for basalt. The best suited locations are warm and humid areas, particularly in India, Brazil, South-East Asia and China, where almost 75% of the global potential can be realized. This work presents a techno-economic assessment framework, which also allows for the incorporation of further processes.
  • Item
    Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century
    (Amsterdam : Elsevier, 2016) Kriegler, Elmar; Bauer, Nico; Popp, Alexander; Humpenöder, Florian; Leimbach, Marian; Strefler, Jessica; Baumstark, Lavinia; Bodirsky, Benjamin Leon; Hilaire, Jérôme; Klein, David; Mouratiadou, Ioanna; Weindl, Isabelle; Bertram, Christoph; Dietrich, Jan-Philipp; Luderer, Gunnar; Pehl, Michaja; Pietzcker, Robert; Piontek, Franziska; Lotze-Campen, Hermann; Biewald, Anne; Bonsch, Markus; Giannousakis, Anastasis; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Schultes, Anselm; Schwanitz, Jana; Stevanovic, Miodrag; Calvin, Katherine; Emmerling, Johannes; Fujimori, Shinichiro; Edenhofer, Ottmar
    This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.
  • Item
    The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview
    (Amsterdam : Elsevier, 2016) Riahi, Keywan; van Vuuren, Detlef P.; Kriegler, Elmar; Edmonds, Jae; O’Neill, Brian C.; Fujimori, Shinichiro; Bauer, Nico; Calvin, Katherine; Dellink, Rob; Fricko, Oliver; Lutz, Wolfgang; Popp, Alexander; Crespo Cuaresma, Jesus; KC, Samir; Leimbach, Marian; Jiang, Leiwen; Kram, Tom; Rao, Shilpa; Emmerling, Johannes; Ebi, Kristie; Hasegawa, Tomoko; Havlik, Petr; Humpenöder, Florian; Aleluia Da Silva, Lara; Smith, Steve; Stehfest, Elke; Bosetti, Valentina; Eom, Jiyong; Gernaat, David; Masui, Toshihiko; Rogelj, Joeri; Strefler, Jessica; Drouet, Laurent; Krey, Volker; Luderer, Gunnar; Harmsen, Mathijs; Takahashi, Kiyoshi; Baumstark, Lavinia; Doelman, Jonathan C.; Kainuma, Mikiko; Klimont, Zbigniew; Marangoni, Giacomo; Lotze-Campen, Hermann; Obersteiner, Michael; Tabeau, Andrzej; Tavoni, Massimo
    This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).
  • Item
    Future air pollution in the Shared Socio-economic Pathways
    (Amsterdam : Elsevier, 2016) Rao, Shilpa; Klimont, Zbigniew; Smith, Steven J.; Van Dingenen, Rita; Dentener, Frank; Bouwman, Lex; Riahi, Keywan; Amann, Markus; Bodirsky, Benjamin Leon; van Vuuren, Detlef P.; Aleluia Reis, Lara; Calvin, Katherine; Drouet, Laurent; Fricko, Oliver; Fujimori, Shinichiro; Gernaat, David; Havlik, Petr; Harmsen, Mathijs; Hasegawa, Tomoko; Heyes, Chris; Hilaire, Jérôme; Luderer, Gunnar; Masui, Toshihiko; Stehfest, Elke; Strefler, Jessica; van der Sluis, Sietske; Tavoni, Massimo
    Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high, central, and low pollution control ambitions over the 21st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. The resulting pollutant emission trajectories under the SSP scenarios cover a wider range than the scenarios used in previous international climate model comparisons. In the SSP3 and SSP4 scenarios, where economic, institutional and technological limitations slow air quality improvements, global pollutant emissions over the 21st century can be comparable to current levels. Pollutant emissions in the SSP1 scenarios fall to low levels due to the assumption of technological advances and successful global action to control emissions.
  • Item
    Bio-energy and CO2 emission reductions: an integrated land-use and energy sector perspective
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Bauer, Nico; Klein, David; Humpenöder, Florian; Kriegler, Elmar; Luderer, Gunnar; Popp, Alexander; Strefler, Jessica
    Biomass feedstocks can be used to substitute fossil fuels and effectively remove carbon from the atmosphere to offset residual CO2 emissions from fossil fuel combustion and other sectors. Both features make biomass valuable for climate change mitigation; therefore, CO2 emission mitigation leads to complex and dynamic interactions between the energy and the land-use sector via emission pricing policies and bioenergy markets. Projected bioenergy deployment depends on climate target stringency as well as assumptions about context variables such as technology development, energy and land markets as well as policies. This study investigates the intra- and intersectorial effects on physical quantities and prices by coupling models of the energy (REMIND) and land-use sector (MAgPIE) using an iterative soft-link approach. The model framework is used to investigate variations of a broad set of context variables, including the harmonized variations on bioenergy technologies of the 33rd model comparison study of the Stanford Energy Modeling Forum (EMF-33) on climate change mitigation and large scale bioenergy deployment. Results indicate that CO2 emission mitigation triggers strong decline of fossil fuel use and rapid growth of bioenergy deployment around midcentury (~ 150 EJ/year) reaching saturation towards end-of-century. Varying context variables leads to diverse changes on mid-century bioenergy markets and carbon pricing. For example, reducing the ability to exploit the carbon value of bioenergy increases bioenergy use to substitute fossil fuels, whereas limitations on bioenergy supply shift bioenergy use to conversion alternatives featuring higher carbon capture rates. Radical variations, like fully excluding all technologies that combine bioenergy use with carbon removal, lead to substantial intersectorial effects by increasing bioenergy demand and increased economic pressure on both sectors. More gradual variations like selective exclusion of advanced bioliquid technologies in the energy sector or changes in diets mostly lead to substantial intrasectorial reallocation effects. The results deepen our understanding of the land-energy nexus, and we discuss the importance of carefully choosing variations in sensitivity analyses to provide a balanced assessment. © 2020, The Author(s).
  • Item
    Air quality co-benefits of ratcheting up the NDCs
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Rauner, Sebastian; Hilaire, Jérôme; Klein, David; Strefler, Jessica; Luderer, Gunnar
    The current nationally determined contributions, pledged by the countries under the Paris Agreement, are far from limiting climate change to below 2 ∘C temperature increase by the end of the century. The necessary ratcheting up of climate policy is projected to come with a wide array of additional benefits, in particular a reduction of today’s 4.5 million annual premature deaths due to poor air quality. This paper therefore addresses the question how climate policy and air pollution–related health impacts interplay until 2050 by developing a comprehensive global modeling framework along the cause and effect chain of air pollution–induced social costs. We find that ratcheting up climate policy to a 2 ∘ compliant pathway results in welfare benefits through reduced air pollution that are larger than mitigation costs, even with avoided climate change damages neglected. The regional analysis demonstrates that the 2 ∘C pathway is therefore, from a social cost perspective, a “no-regret option” in the global aggregate, but in particular for China and India due to high air quality benefits, and also for developed regions due to net negative mitigation costs. Energy and resource exporting regions, on the other hand, face higher mitigation cost than benefits. Our analysis further shows that the result of higher health benefits than mitigation costs is robust across various air pollution control scenarios. However, although climate mitigation results in substantial air pollution emission reductions overall, we find significant remaining emissions in the transport and industry sectors even in a 2 ∘C world. We therefore call for further research in how to optimally exploit climate policy and air pollution control, deriving climate change mitigation pathways that maximize co-benefits. © 2020, The Author(s).