Search Results

Now showing 1 - 2 of 2
  • Item
    Large mesospheric ice particles at exceptionally high altitudes
    (München : European Geopyhsical Union, 2009) Megner, L.; Khaplanov, M.; Baumgarten, G.; Gumbel, J.; Stegman, J.; Strelnikov, B.; Robertson, S.
    We here report on the characteristics of exceptionally high Noctilucent clouds (NLC) that were detected with rocket photometers during the ECOMA/MASS campaign at Andøya, Norway 2007. The results from three separate flights are shown and discussed in connection to lidar measurements. Both the lidar measurements and the large difference between various rocket passages through the NLC show that the cloud layer was inhomogeneous on large scales. Two passages showed a particularly high, bright and vertically extended cloud, reaching to approximately 88 km. Long time series of lidar measurements show that NLC this high are very rare, only one NLC measurement out of thousand reaches above 87 km. The NLC is found to consist of three distinct layers. All three were bright enough to allow for particle size retrieval by phase function analysis, even though the lowest layer proved too horizontally inhomogeneous to obtain a trustworthy result. Large particles, corresponding to an effective radius of 50 nm, were observed both in the middle and top of the NLC. The present cloud does not comply with the conventional picture that NLC ice particles nucleate near the temperature minimum and grow to larger sizes as they sediment to lower altitudes. Strong up-welling, likely caused by gravity wave activity, is required to explain its characteristics.
  • Item
    Small-scale structures in neutrals and charged aerosol particles as observed during the ECOMA/MASS rocket campaign
    (München : European Geopyhsical Union, 2009) Strelnikov, B.; Rapp, M.; Strelnikova, I.; Engler, N.; Latteck, R.
    We present results of in situ measurements of neutral temperature during the ECOMA/MASS rocket campaign. We present and compare results of turbulence measurements conducted simultaneously by both in situ and doppler radar techniques. We show that the derived values of the turbulence energy dissipation rates are similar on average. We also find a region with a near adiabatic lapse rate with turbulence detected at the upper and lower edge. We note that it is consistent with expectation for a Kelvin-Helmholtz instability. We also present an estimate of the Schmidt numbers, Sc, for the charged aerosols that utilizes in situ measured small-scale density fluctuations of charged aerosols and both in situ and radar turbulence measurements. The derived Schmidt numbers fall within the range between 100 and 4500. This result agrees with previous estimates based on multi-frequency observations of PMSE (Rapp et al., 2008) and also with estimates of microphysical parameters presented in the companion paper by Rapp et al. (2009).