Search Results

Now showing 1 - 2 of 2
  • Item
    Nonclassical Recrystallization
    (Weinheim : Wiley-VCH, 2020) Brunner, Julian; Maier, Britta; Rosenberg, Rose; Sturm, Sebastian; Cölfen, Helmut; Sturm, Elena V.
    Applications in the fields of materials science and nanotechnology increasingly demand monodisperse nanoparticles in size and shape. Up to now, no general purification procedure exists to thoroughly narrow the size and shape distributions of nanoparticles. Here, we show by analytical ultracentrifugation (AUC) as an absolute and quantitative high-resolution method that multiple recrystallizations of nanocrystals to mesocrystals is a very efficient tool to generate nanocrystals with an excellent and so-far unsurpassed size-distribution (PDIc=1.0001) and shape. Similar to the crystallization of molecular building blocks, nonclassical recrystallization removes “colloidal” impurities (i.e., nanoparticles, which are different in shape and size from the majority) by assembling them into a mesocrystal. In the case of nanocrystals, this assembly can be size- and shape-selective, since mesocrystals show both long-range packing ordering and preferable crystallographic orientation of nanocrystals. Besides the generation of highly monodisperse nanoparticles, these findings provide highly relevant insights into the crystallization of mesocrystals. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Three-Dimensional Composition and Electric Potential Mapping of III–V Core–Multishell Nanowires by Correlative STEM and Holographic Tomography
    (Washington, DC : ACS Publ., 2018-7-13) Wolf, Daniel; Hübner, René; Niermann, Tore; Sturm, Sebastian; Prete, Paola; Lovergine, Nico; Büchner, Bernd; Lubk, Axel
    The nondestructive characterization of nanoscale devices, such as those based on semiconductor nanowires, in terms of functional potentials is crucial for correlating device properties with their morphological/materials features, as well as for precisely tuning and optimizing their growth process. Electron holographic tomography (EHT) has been used in the past to reconstruct the total potential distribution in three-dimension but hitherto lacked a quantitative approach to separate potential variations due to chemical composition changes (mean inner potential, MIP) and space charges. In this Letter, we combine and correlate EHT and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) tomography on an individual ⟨111⟩ oriented GaAs–AlGaAs core–multishell nanowire (NW). We obtain excellent agreement between both methods in terms of the determined Al concentration within the AlGaAs shell, as well as thickness variations of the few nanometer thin GaAs shell acting as quantum well tube. Subtracting the MIP determined from the STEM tomogram, enables us to observe functional potentials at the NW surfaces and at the Au–NW interface, both ascribed to surface/interface pinning of the semiconductor Fermi level.