Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

In-situ nanodiamond to carbon onion transformation in metal matrix composites

2018, Suarez, Sebastian, Reinert, Leander, Zeiger, Marco, Miska, Patrice, Grandthyll, Samuel, Müller, Frank, Presser, Volker, Mücklich, Frank

In the present study, nickel matrix composites reinforced with a fine distribution of nanodiamonds (6.5 vol%) as reinforcement phase are annealed in vacuum at different temperatures ranging from 750 °C to 1300 °C. This is carried out to evaluate the in-situ transformation of nanodiamonds to carbon onions within a previously densified composite. The resulting materials are thoroughly analyzed by complementary analytical methods, including Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The proposed in-situ transformation method presents two main benefits. On one hand, since the particle distribution of a nanodiamond-reinforced composite is significantly more homogenous than in case of the carbon onions, it is expected that the transformed particles will preserve the initial distribution features of nanodiamonds. On the other hand, the proposed process allows for the tuning of the sp3/sp2 carbon ratio by applying a single straightforward post-processing step.

Loading...
Thumbnail Image
Item

Influence of structural depth of laser-patterned steel surfaces on the solid lubricity of carbon nanoparticle coatings

2022, Maclucas, Timothy, Daut, Lukas, Grützmacher, Philipp, Guitar, Maria Agustina, Presser, Volker, Gachot, Carsten, Suarez, Sebastian, Mücklich, Frank

Carbon nanoparticle coatings on laser-patterned stainless-steel surfaces present a solid lubrication system where the pattern’s recessions act as lubricant-retaining reservoirs. This study investigates the influence of the structural depth of line patterns coated with multi-walled carbon nanotubes (CNTs) and carbon onions (COs) on their respective potential to reduce friction and wear. Direct laser interference patterning (DLIP) with a pulse duration of 12 ps is used to create line patterns with three different structural depths at a periodicity of 3.5 µm on AISI 304 steel platelets. Subsequently, electrophoretic deposition (EPD) is applied to form homogeneous carbon nanoparticle coatings on the patterned platelets. Tribological ball-on-disc experiments are conducted on the as-described surfaces with an alumina counter body at a load of 100 mN. The results show that the shallower the coated structure, the lower its coefficient of friction (COF), regardless of the particle type. Thereby, with a minimum of just below 0.20, CNTs reach lower COF values than COs over most of the testing period. The resulting wear tracks are characterized by scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. During friction testing, the CNTs remain in contact, and the immediate proximity, whereas the CO coating is largely removed. Regardless of structural depth, no oxidation occurs on CNT-coated surfaces, whereas minor oxidation is detected on CO-coated wear tracks. [Figure not available: see fulltext.].