Search Results

Now showing 1 - 3 of 3
  • Item
    Balancing trade-offs between ecosystem services in Germany's forests under climate change
    (Bristol : IOP Publishing, 2018) Gutsch, Martin; Lasch-Born, Petra; Kollas, Chris; Suckow, Felicitas; Reyer, Christopher P.O.
    Germany's forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services 'carbon' and 'timber' benefit from climate change, while 'water' and 'habitat' lose. We detect clear trade-offs between 'timber' and all other ecosystem services, as well as synergies between 'habitat' and 'carbon'. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining ecosystem services) whereas southern and central forest regions are more suitable to fulfil 'habitat' and 'carbon' services. The results provide the base for future forest management optimizations at the regional scale in order to maximize ecosystem services and forest ecosystem sustainability at the national scale.
  • Item
    Modeling of two different water uptake approaches for mono-and mixed-species forest stands
    (Basel : MDPI, 2015) Gutsch, Martin; Lasch-Born, Petra; Suckow, Felicitas; Reyer, Christopher P.O.
    To assess how the effects of drought could be better captured in process-based models, this study simulated and contrasted two water uptake approaches in Scots pine and Scots pine-Sessile oak stands. The first approach consisted of an empirical function for root water uptake (WU1). The second approach was based on differences of soil water potential along a soil-plant-atmosphere continuum (WU2) with total root resistance varying at low, medium and high total root resistance levels. Three data sets on different time scales relevant for tree growth were used for model evaluation: Two short-term datasets on daily transpiration and soil water content as well as a long-term dataset on annual tree ring increments. Except WU2 with high total root resistance, all transpiration outputs exceeded observed values. The strongest correlation between simulated and observed annual tree ring width occurred with WU2 and high total root resistance. The findings highlighted the importance of severe drought as a main reason for small diameter increment. However, if all three data sets were taken into account, no approach was superior to the other. We conclude that accurate projections of future forest productivity depend largely on the realistic representation of root water uptake in forest model simulations.
  • Item
    Verbundprojekt OakChain - "Eichen-Kiefern-Mischbestände" : Abschlussbericht 2010 ; TP 2.2: Modellgestützte Analyse von Eichen-Kiefern Mischbeständen im subkontinentalen Nordostdeutschen Tiefland unter Klimawandel
    (Hannover : Technische Informationsbibliothek, 2010) Suckow, Felicitas; Gutsch, Martin; Lasch, Petra; Badeck, Franz
    [no abstract available]