Search Results

Now showing 1 - 2 of 2
  • Item
    Correlation of Electrical Properties and Acoustic Loss in Single Crystalline Lithium Niobate-Tantalate Solid Solutions at Elevated Temperatures
    (2021) Suhak, Yuriy; Roshchupkin, Dmitry; Redkin, Boris; Kabir, Ahsanul; Jerliu, Bujar; Ganschow, Steffen; Fritze, Holger
    Electrical conductivity and acoustic loss Q−1 of single crystalline Li(Nb,Ta)O3 solid solutions (LNT) are studied as a function of temperature by means of impedance spectroscopy and resonant piezoelectric spectroscopy, respectively. For this purpose, bulk acoustic wave resonators with two different Nb/Ta ratios are investigated. The obtained results are compared to those previously reported for congruent LiNbO3. The temperature dependent electrical conductivity of LNT and LiNbO3 show similar behavior in air at high temperatures from 400 to 700 °C. Therefore, it is concluded that the dominant transport mechanism in LNT is the same as in LN, which is the Li transport via Li vacancies. Further, it is shown that losses in LNT strongly increase above about 500 °C, which is interpreted to originate from conductivity-related relaxation mechanism. Finally, it is shown that LNT bulk acoustic resonators exhibit significantly lower loss, comparing to that of LiNbO3.
  • Item
    Electromechanical losses in carbon- and oxygen-containing bulk AlN single crystals
    (Amsterdam [u.a.] : Elsevier Science, 2019) Kogut, Iurii; Hartmann, Carsten; Gamov, Ivan; Suhak, Yuriy; Schulz, Michal; Schröder, Sebastian; Wollweber, Jürgen; Dittmar, Andrea; Irmscher, Klaus; Straubinger, Thomas; Bickermann, Matthias; Fritze, Holger
    Bulk single-crystalline aluminum nitride (AlN) is potentially a key component for low-loss high-temperature piezoelectric devices. However, the incorporation of electrically active impurities and defects during growth of AlN may adversely affect the performance of piezoelectric resonators especially at high temperatures. The electrical conductivity and electromechanical losses in bulk AlN single crystals are analyzed in the temperature range of 300–1200 K with respect to various contents of growth-related impurities in them. For AlN with [O]/[C] ≤ 1, an increase of electrical conductivity due to thermal activation of charge carriers in the temperature range of 850–1200 K has been observed and was determined to be a major contribution to electromechanical losses Q−1 rising up to maximum values of about 10−3 at 1200 K. As the oxygen content in AlN increased, the magnitude and the activation energy of high-temperature electrical conductivity increased. In oxygen-dominated AlN, two major thermally activated contributions to electromechanical losses were observed, namely, the anelastic relaxations of point defects at temperatures of 400–800 K and electrical conductivity at T > 800 K.