Search Results

Now showing 1 - 3 of 3
  • Item
    Free Discharge of Subsurface Drainage Effluent: An Alternate Design of the Surface Drain System in Pakistan
    (Basel : MDPI AG, 2021) Imran, Muhammad Ali; Xu, Jinlan; Sultan, Muhammad; Shamshiri, Redmond R.; Ahmed, Naveed; Javed, Qaiser; Asfahan, Hafiz Muhammad; Latif, Yasir; Usman, Muhammad; Ahmad, Riaz
    In Pakistan, many subsurface (SS) drainage projects were launched by the Salinity Control and Reclamation Project (SCARP) to deal with twin problems (waterlogging and salinity). In some cases, sump pumps were installed for the disposal of SS effluent into surface drainage channels. Presently, sump pumps have become dysfunctional due to social and financial constraints. This study evaluates the alternate design of the Paharang drainage system that could permit the discharge of the SS drainage system in the response of gravity. The proposed design was completed after many successive trials in terms of lowering the bed level and decreasing the channel bed slope. Interconnected MS-Excel worksheets were developed to design the L-section and X-section. Design continuity of the drainage system was achieved by ensuring the bed and water levels of the receiving drain were lower than the outfalling drain. The drain cross-section was set within the present row with a few changes on the service roadside. The channel side slope was taken as 1:1.5 and the spoil bank inner and outer slopes were kept as 1:2 for the entire design. The earthwork was calculated in terms of excavation for lowering the bed level and increasing the drain section to place the excavated materials in a specific manner. The study showed that modification in the design of the Paharang drainage system is technically admissible and allows for the continuous discharge of SS drainage effluent from the area.
  • Item
    Investigating Applicability of Evaporative Cooling Systems for Thermal Comfort of Poultry Birds in Pakistan
    (Basel : MDPI, 2020) Raza, Hafiz M.U.; Ashraf, Hadeed; Shahzad, Khawar; Sultan, Muhammad; Miyazaki, Takahiko; Usman, Muhammad; Shamshiri, Redmond R.; Zhou, Yuguang; Ahmad, Riaz
    In the 21st century, the poultry sector is a vital concern for the developing economies including Pakistan. The summer conditions of the city of Multan (Pakistan) are not comfortable for poultry birds. Conventionally, swamp coolers are used in the poultry sheds/houses of the city, which are not efficient enough, whereas compressor-based systems are not economical. Therefore, this study is aimed to explore a low-cost air-conditioning (AC) option from the viewpoint of heat stress in poultry birds. In this regard, the study investigates the applicability of three evaporative cooling (EC) options, i.e., direct EC (DEC), indirect EC (IEC), and Maisotsenko-cycle EC (MEC). Performance of the EC systems is investigated using wet-bulb effectiveness (WBE) for the climatic conditions of Multan. Heat stress is investigated as a function of poultry weight. Thermal comfort of the poultry birds is calculated in terms of temperature-humidity index (THI) corresponding to the ambient and output conditions. The heat production from the poultry birds is calculated using the Pederson model (available in the literature) at various temperatures. The results indicate a maximum temperature gradient of 10.2 °C (MEC system), 9 °C (DEC system), and 6.5 °C (IEC systems) is achieved. However, in the monsoon/rainfall season, the performance of the EC systems is significantly reduced due to higher relative humidity in ambient air.
  • Item
    Dynamic Evaluation of Desiccant Dehumidification Evaporative Cooling Options for Greenhouse Air-Conditioning Application in Multan (Pakistan)
    (Basel : MDPI, 2021) Ashraf, Hadeed; Sultan, Muhammad; Shamshiri, Redmond R.; Abbas, Farrukh; Farooq, Muhammad; Sajjad, Uzair; Md-Tahir, Hafiz; Mahmood, Muhammad H.; Ahmad, Fiaz; Taseer, Yousaf R.; Shahzad, Aamir; Niazi, Badar M.K.
    This study provides insights into the feasibility of a desiccant dehumidification-based Maisotsenko cycle evaporative cooling (M-DAC) system for greenhouse air-conditioning application. Conventional cooling techniques include direct evaporative cooling, refrigeration systems, and passive/active ventilation. which are commonly used in Pakistan; however, they are either not feasible due to their energy cost, or they cannot efficiently provide an optimum microclimate depending on the regions, the growing seasons, and the crop being cultivated. The M-DAC system was therefore proposed and evaluated as an alternative solution for air conditioning to achieve optimum levels of vapor pressure deficit (VPD) for greenhouse crop production. The objective of this study was to investigate the thermodynamic performance of the proposed system from the viewpoints of the temperature gradient, relative humidity level, VPD, and dehumidification gradient. Results showed that the standalone desiccant air-conditioning (DAC) system created maximum dehumidification gradient (i.e., 16.8 g/kg) and maximum temperature gradient (i.e., 8.4 °C) at 24.3 g/kg and 38.6 °C ambient air conditions, respectively. The DAC coupled with a heat exchanger (DAC+HX) created a temperature gradient nearly equal to ambient air conditions, which is not in the optimal range for greenhouse growing conditions. Analysis of the M-DAC system showed that a maximum air temperature gradient, i.e., 21.9 °C at 39.2 °C ambient air condition, can be achieved, and is considered optimal for most greenhouse crops. Results were validated with two microclimate models (OptDeg and Cft) by taking into account the optimality of VPD at different growth stages of tomato plants. This study suggests that the M-DAC system is a feasible method to be considered as an efficient solution for greenhouse air-conditioning under the climate conditions of Multan (Pakistan).