Search Results

Now showing 1 - 10 of 11
  • Item
    Investigating Solid and Liquid Desiccant Dehumidification Options for Room Air-Conditioning and Drying Applications
    (Basel : MDPI, 2020) Naik, B. Kiran; Joshi, Mullapudi; Muthukumar, Palanisamy; Sultan, Muhammad; Miyazaki, Takahiko; Shamshiri, Redmond R.; Ashraf, Hadeed
    This study reports on the investigation of the performance of single and two-stage liquid and solid desiccant dehumidification systems and two-stage combined liquid and solid desiccant dehumidification systems with reference to humid climates. The research focus is on a dehumidification system capacity of 25 kW designed for room air conditioning application using the thermal models reported in the literature. RD-type silica gel and LiCl are used as solid and liquid desiccant materials, respectively. In this study, the application of proposed system for deep drying application is also explored. Condensation rate and moisture removal efficiency are chosen as performance parameters for room air conditioning application, whereas air outlet temperature is chosen as performance parameter for deep drying application. Further, for a given range of operating parameters, influences of air inlet humidity ratio, flow rate, and inlet temperature on performance parameters of the systems are investigated. In humid climatic conditions, it has been observed that a two-stage liquid desiccant dehumidification system is more effective for room air conditioning application, and two-stage solid desiccant dehumidification system is more suitable for deep drying application in the temperature range of 50 to 70 °C, while single-stage solid desiccant and two-stage combined liquid and solid desiccant dehumidification systems are more effective for low temperature, i.e., 30 to 50 °C deep drying application.
  • Item
    Simulating Cotton Growth and Productivity Using AquaCrop Model under Deficit Irrigation in a Semi-Arid Climate
    (Basel : MDPI AG, 2022) Aziz, Marjan; Rizvi, Sultan Ahmad; Sultan, Muhammad; Bazmi, Muhammad Sultan Ali; Shamshiri, Redmond R.; Ibrahim, Sobhy M.; Imran, Muhammad A.
    AquaCrop is a water-driven model that simulates the effect of environment and management on crop production under deficit irrigation. The model was calibrated and validated using three databases and four irrigation treatments (i.e., 100%ET, 80%ET, 70%ET, and 50%ET). Model performance was evaluated by simulating canopy cover (CC), biomass accumulation, and water productivity (WP). Statistics of root mean square error (RMSE) and Willmott’s index of agreement (d) showed that model predictions are suitable for non-stressed and moderate stressed conditions. The results showed that the simulated biomass and yield were consistent with the measured values with a coefficient of determination (R2) of 0.976 and 0.950, respectively. RMSE and d-index values for canopy cover (CC) were 2.67% to 4.47% and 0.991% to 0.998% and for biomass were 0.088 to 0.666 ton/ha and 0.991 to 0.999 ton/ha, respectively. Prediction of simulated and measured biomass and final yield was acceptable with deviation ˂10%. The overall value of R2 for WP in terms of yield was 0.943. Treatment with 80% ET consumed 20% less water than the treatment with 100%ET and resulted in high WP in terms of yield (0.6 kg/m3) and biomass (1.74 kg/m3), respectively. The deviations were in the range of −2% to 11% in yield and −2% to 4% in biomass. It was concluded that AquaCrop is a useful tool in predicting the productivity of cotton under different irrigation scenarios.
  • Item
    Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review
    (Basel : MDPI, 2022) Rasheed, Muhammad Waseem; Tang, Jialiang; Sarwar, Abid; Shah, Suraj; Saddique, Naeem; Khan, Muhammad Usman; Imran Khan, Muhammad; Nawaz, Shah; Shamshiri, Redmond R.; Aziz, Marjan; Sultan, Muhammad
    The amount of surface soil moisture (SSM) is a crucial ecohydrological natural resource that regulates important land surface processes. It affects critical land–atmospheric phenomena, including the division of energy and water (infiltration, runoff, and evaporation), that impacts the effectiveness of agricultural output (sensible and latent heat fluxes and surface air temperature). Despite its significance, there are several difficulties in making precise measurements, monitoring, and interpreting SSM at high spatial and temporal resolutions. The current study critically reviews the methods and procedures for calculating SSM and the variables influencing measurement accuracy and applicability under different fields, climates, and operational conditions. For laboratory and field measurements, this study divides SSM estimate strategies into (i) direct and (ii) indirect procedures. The accuracy and applicability of a technique depends on the environment and the resources at hand. Comparative research is geographically restricted, although precise and economical—direct measuring techniques like the gravimetric method are time-consuming and destructive. In contrast, indirect methods are more expensive and do not produce measurements at the spatial scale but produce precise data on a temporal scale. While measuring SSM across more significant regions, ground-penetrating radar and remote sensing methods are susceptible to errors caused by overlapping data and atmospheric factors. On the other hand, soft computing techniques like machine/deep learning are quite handy for estimating SSM without any technical or laborious procedures. We determine that factors, e.g., topography, soil type, vegetation, climate change, groundwater level, depth of soil, etc., primarily influence the SSM measurements. Different techniques have been put into practice for various practical situations, although comparisons between them are not available frequently in publications. Each method offers a unique set of potential advantages and disadvantages. The most accurate way of identifying the best soil moisture technique is the value selection method (VSM). The neutron probe is preferable to the FDR or TDR sensor for measuring soil moisture. Remote sensing techniques have filled the need for large-scale, highly spatiotemporal soil moisture monitoring. Through self-learning capabilities in data-scarce areas, machine/deep learning approaches facilitate soil moisture measurement and prediction.
  • Item
    Dynamic Evaluation of Desiccant Dehumidification Evaporative Cooling Options for Greenhouse Air-Conditioning Application in Multan (Pakistan)
    (Basel : MDPI, 2021) Ashraf, Hadeed; Sultan, Muhammad; Shamshiri, Redmond R.; Abbas, Farrukh; Farooq, Muhammad; Sajjad, Uzair; Md-Tahir, Hafiz; Mahmood, Muhammad H.; Ahmad, Fiaz; Taseer, Yousaf R.; Shahzad, Aamir; Niazi, Badar M.K.
    This study provides insights into the feasibility of a desiccant dehumidification-based Maisotsenko cycle evaporative cooling (M-DAC) system for greenhouse air-conditioning application. Conventional cooling techniques include direct evaporative cooling, refrigeration systems, and passive/active ventilation. which are commonly used in Pakistan; however, they are either not feasible due to their energy cost, or they cannot efficiently provide an optimum microclimate depending on the regions, the growing seasons, and the crop being cultivated. The M-DAC system was therefore proposed and evaluated as an alternative solution for air conditioning to achieve optimum levels of vapor pressure deficit (VPD) for greenhouse crop production. The objective of this study was to investigate the thermodynamic performance of the proposed system from the viewpoints of the temperature gradient, relative humidity level, VPD, and dehumidification gradient. Results showed that the standalone desiccant air-conditioning (DAC) system created maximum dehumidification gradient (i.e., 16.8 g/kg) and maximum temperature gradient (i.e., 8.4 °C) at 24.3 g/kg and 38.6 °C ambient air conditions, respectively. The DAC coupled with a heat exchanger (DAC+HX) created a temperature gradient nearly equal to ambient air conditions, which is not in the optimal range for greenhouse growing conditions. Analysis of the M-DAC system showed that a maximum air temperature gradient, i.e., 21.9 °C at 39.2 °C ambient air condition, can be achieved, and is considered optimal for most greenhouse crops. Results were validated with two microclimate models (OptDeg and Cft) by taking into account the optimality of VPD at different growth stages of tomato plants. This study suggests that the M-DAC system is a feasible method to be considered as an efficient solution for greenhouse air-conditioning under the climate conditions of Multan (Pakistan).
  • Item
    Scientific Irrigation Scheduling for Sustainable Production in Olive Groves
    (Basel : MDPI AG, 2022) Aziz, Marjan; Khan, Madeeha; Anjum, Naveeda; Sultan, Muhammad; Shamshiri, Redmond R.; Ibrahim, Sobhy M.; Balasundram, Siva K.; Aleem, Muhammad
    The present study aimed at investigating scientific irrigation scheduling (SIS) for the sustainable production of olive groves. The SIS allows farmers to schedule water rotation in their fields to abate crop water stress and maximize yields, which could be achieved through the precise monitoring of soil moisture. For this purpose, the study used three kinds of soil moisture sensors, including tensiometer sensors, irrometer sensors, and gypsum blocks for precise measurement of the soil moisture. These soil moisture sensors were calibrated by performing experiments in the field and laboratory at Barani Agricultural Research Institute, Chakwal in 2018 and 2019. The calibration curves were obtained by performing gravimetric analysis at 0.3 and 0.6 m depths, thereby equations were developed using regression analysis. The coefficient of determination (R2 ) at 0.3 and 0.6 m depth for tensiometer, irrometer, and gypsum blocks was found to be equal to 0.98, 0.98; 0.75, 0.89; and 0.82, and 0.95, respectively. After that, a drip irrigation system was installed with the calibrated soil moisture sensors at 0.3 and 0.6 m depth to schedule irrigation for production of olive groves as compared to conventional farmer practice, thereby soil moisture profiles of these sensors were obtained to investigate the SIS. The results showed that the irrometer sensor performed as expected and contributed to the irrigation water savings between 17% and 25% in 2018 and 2019, respectively, by reducing the number of irrigations as compared toother soil moisture sensors and farmer practices. Additionally, olive yield efficiencies of 8% and 9%were observed by the tensiometer in 2018 and 2019, respectively. The outcome of the study suggests that an effective method in providing sustainable production of olive groves and enhancing yield efficiency.
  • Item
    Evaluating Evaporative Cooling Assisted Solid Desiccant Dehumidification System for Agricultural Storage Application
    (Basel : MDPI, 2022) Hussain, Ghulam; Aleem, Muhammad; Sultan, Muhammad; Sajjad, Uzair; Ibrahim, Sobhy M.; Shamshiri, Redmond R.; Farooq, Muhammad; Usman Khan, Muhammad; Bilal, Muhammad
    The study aims to investigate Maisotsenko cycle evaporative cooling assisted solid desiccant air‐conditioning (M‐DAC) system for agricultural storage application. Conventional air‐conditioning (AC) systems used for this application are refrigeration‐based which are expensive as they consume excessive amount of primary‐energy. In this regard, the study developed a lab‐scale solid silica gel‐based desiccant AC (DAC) system. Thermodynamic performance of the developed system was investigated using various adsorption/dehumidification and desorption/regeneration cycles. The system possesses maximum adsorption potential i.e., 4.88 g/kg‐DA at higher regeneration temperature of 72.6 °C and long cycle time i.e., 60 min: 60 min. Moreover, the system’s energy consumption performance was investigated from viewpoints of maximum latent, sensible, and total heat as well as latent heat ratio (LHR), which were found to be 0.64 kW, 1.16 kW, and 1.80 kW, respectively with maximum LHR of 0.49. Additionally, the study compared standalone DAC (S‐ DAC), and M‐DAC system thermodynamically to investigate the feasibility of these systems from the viewpoints of temperature and relative humidity ranges, cooling potential (Qp), and coefficient of performance (COP). The S‐DAC system showed temperature and relative humidity ranging from 39 °C to 48 °C, and 35% to 66%, respectively, with Qp and COP of 17.55 kJ/kg, and 0.37, respectively. Conversely, the M‐DAC system showed temperature and relative humidity ranging from 17 °C to 25 °C, and 76% to 98%, respectively, with Qp and COP of 41.80 kJ/kg, and 0.87, respectively. Additionally, the study investigated respiratory heat generation rate (Qres), and heat transfer rate (Qrate) by agricultural products at different temperature gradient (∆T) and air velocity. The Qres and Qrate by the products were increased with ∆T and air velocity, respectively, thereby generating heat loads in the storage house. Therefore, the study suggests that the M‐DAC system could be a potential AC option for agricultural storage application.
  • Item
    Effect of In Vitro Digestion on the Antioxidant and Angiotensin-Converting Enzyme Inhibitory Potential of Buffalo Milk Processed Cheddar Cheese
    (Basel : MDPI AG, 2021) Shaukat, Amal; Nadeem, Muhammad; Qureshi, Tahir Mahmood; Kanwal, Rabia; Sultan, Muhammad; Kashongwe, Olivier Basole; Shamshiri, Redmond R.; Murtaza, Mian Anjum
    The purpose of this study was to develop an in-vitro digestion protocol to evaluate the antioxidant potential of the peptides found in processed cheddar cheese using digestion enzymes. We first studied antioxidant and angiotensin-converting enzyme (ACE) inhibition and antioxidant activities of processed cheddar cheese with the addition of spices e.g., cumin, clove, and black pepper made from buffalo milk and ripened for 9 months. Then we conducted an in vitro digestion of processed cheddar cheese by gastric and duodenal enzymes. Freeze-dried water (WSE) and ethanol-soluble fractions (ESE) of processed cheddar cheese were also monitored for their ACE inhibition activity and antioxidant activities. In our preliminary experiments, different levels of spices (cumin, clove, and black pepper) were tested into a cheese matrix and only one level 0.2 g/100 g (0.2%) based on cheese weight was considered good after sensory evaluation. Findings of the present study revealed that ACE-inhibitory potential was the highest in processed cheese made from buffalo milk with the addition of 0.2% cumin, clove, and black pepper. A significant increase in ACE-inhibition (%) of processed cheddar cheese, as well as its WSE and ESE, was obtained. Lower IC50 values were found after duodenal phase digestion compared to oral phase digestion.
  • Item
    Investigation of Energy Consumption and Associated CO2 Emissions for Wheat–Rice Crop Rotation Farming
    (Basel : MDPI, 2021) Ashraf, Muhammad N.; Mahmood, Muhammad H.; Sultan, Muhammad; Shamshiri, Redmond R.; Ibrahim, Sobhy M.
    This study investigates the input–output energy-flow patterns and CO2 emissions from the wheat–rice crop rotation system. In this regard, an arid region of Punjab, Pakistan was selected as the study area, comprising 4150 km2. Farmers were interviewed to collect data and information on input/output sources during the 2020 work season. The total energy from these sources was calculated using appropriate energy equivalents. Three energy indices, including energy use efficiency (ηe), energy productivity (ηp), and net energy (ρ), were defined and calculated to investigate overall energy efficiency. Moreover, the data envelopment analysis (DEA) technique was used to optimize the input energy in wheat and rice production. Finally, CO2 emissions was calculated using emissions equivalents from peer-reviewed published literature. Results showed that the average total energy consumption in rice production was twice the energy consumed in wheat production. However, the values of ηe, ηp, and ρ were higher in wheat production and calculated as 5.68, 202.3 kg/GJ, and 100.12 GJ/ha, respectively. The DEA showed the highest reduction potential in machinery energy for both crops, calculated as −42.97% in rice production and −17.48% in wheat production. The highest CO2 emissions were found in rice production and calculated as 1762.5 kg-CO2/ha. Our conclusion indicates that energy consumption and CO2 emissions from wheat–rice cropping systems can be minimized using optimized energy inputs.
  • Item
    Effects of the COVID-19 Pandemic on Food Security and Agriculture in Iran: A Survey
    (Basel : MDPI AG, 2021) Rad, Abdullah Kaviani; Shamshiri, Redmond R.; Azarm, Hassan; Balasundram, Siva K.; Sultan, Muhammad
    The consequences of COVID-19 on the economy and agriculture have raised many concerns about global food security, especially in developing countries. Given that food security is a critical component that is affected by global crises, beside the limited studies carried out on the macro-impacts of COVID-19 on food security in Iran, this paper is an attempt to address the dynamic impacts of COVID-19 on food security along with economic and environmental challenges in Iran. For this purpose, a survey was conducted with the hypothesis that COVID-19 has not affected food security in Iran. To address this fundamental hypothesis, we applied the systematic review method to obtain the evidence. Various evidences, including indices and statistics, were collected from national databases, scientific reports, field observations, and interviews. Preliminary results revealed that COVID-19 exerts its effects on the economy, agriculture, and food security of Iran through six major mechanisms, corresponding to a 30% decrease in the purchasing power parity in 2020 beside a significant increase in food prices compared to 2019. On the other hand, the expanding environmental constraints in Iran reduce the capacity of the agricultural sector to play a crucial role in the economy and ensure food security, and in this regard, COVID-19 forces the national programs and budget to combat rising ecological limitations. Accordingly, our study rejects the hypothesis that COVID-19 has not affected food security in Iran.
  • Item
    Free Discharge of Subsurface Drainage Effluent: An Alternate Design of the Surface Drain System in Pakistan
    (Basel : MDPI AG, 2021) Imran, Muhammad Ali; Xu, Jinlan; Sultan, Muhammad; Shamshiri, Redmond R.; Ahmed, Naveed; Javed, Qaiser; Asfahan, Hafiz Muhammad; Latif, Yasir; Usman, Muhammad; Ahmad, Riaz
    In Pakistan, many subsurface (SS) drainage projects were launched by the Salinity Control and Reclamation Project (SCARP) to deal with twin problems (waterlogging and salinity). In some cases, sump pumps were installed for the disposal of SS effluent into surface drainage channels. Presently, sump pumps have become dysfunctional due to social and financial constraints. This study evaluates the alternate design of the Paharang drainage system that could permit the discharge of the SS drainage system in the response of gravity. The proposed design was completed after many successive trials in terms of lowering the bed level and decreasing the channel bed slope. Interconnected MS-Excel worksheets were developed to design the L-section and X-section. Design continuity of the drainage system was achieved by ensuring the bed and water levels of the receiving drain were lower than the outfalling drain. The drain cross-section was set within the present row with a few changes on the service roadside. The channel side slope was taken as 1:1.5 and the spoil bank inner and outer slopes were kept as 1:2 for the entire design. The earthwork was calculated in terms of excavation for lowering the bed level and increasing the drain section to place the excavated materials in a specific manner. The study showed that modification in the design of the Paharang drainage system is technically admissible and allows for the continuous discharge of SS drainage effluent from the area.