Search Results

Now showing 1 - 9 of 9
  • Item
    Diode laser based light sources for biomedical applications
    (Hoboken, NJ : Wiley, 2012) Müller, André; Marschall, Sebastian; Jensen, Ole Bjarlin; Fricke, Jörg; Wenzel, Hans; Sumpf, Bernd; Andersen, Peter E.
    Diode lasers are by far the most efficient lasers currently available. With the ever-continuing improvement in diode laser technology, this type of laser has become increasingly attractive for a wide range of biomedical applications. Compared to the characteristics of competing laser systems, diode lasers simultaneously offer tunability, high-power emission and compact size at fairly low cost. Therefore, diode lasers are increasingly preferred in important applications, such as photocoagulation, optical coherence tomography, diffuse optical imaging, fluorescence lifetime imaging, and terahertz imaging. This review provides an overview of the latest development of diode laser technology and systems and their use within selected biomedical applications.
  • Item
    Continuous Wave THz System Based on an Electrically Tunable Monolithic Dual Wavelength Y-Branch DBR Diode Laser
    (New York, NY : Springer, 2020) Gwaro, Jared O.; Brenner, Carsten; Theurer, L.S.; Maiwald, M.; Sumpf, Bernd; Hofmann, Martin R.
    We analyse the use of a tunable dual wavelength Y-branch DBR laser diode for THz applications. The laser generates electrically tunable THz difference frequencies in the range between 100 and 300 GHz. The optical beats are tuned via current injection into a micro-resistor heater integrated on top of one of the distributed Bragg reflector (DBR) section of the diode. The laser is integrated in a homodyne THz system employing fiber coupled ion-implanted LT-GaAs log spiral antennas. The applicability of the developed system in THz spectroscopy is demonstrated by evaluating the spectral resonances of a THz filter as well as in THz metrology in thickness determination of a polyethylene sample.
  • Item
    Shifted excitation Raman difference spectroscopy as enabling technique for the analysis of animal feedstuff
    (Chichester [u.a.] : Wiley, 2021) Sowoidnich, Kay; Oster, Michael; Wimmers, Klaus; Maiwald, Martin; Sumpf, Bernd
    To achieve the best performance and health in farm animals, high-quality pellets should be applied for feeding. Raw materials used for pellet production can have a significant influence on the nutritive and physical characteristics of the final product. A comprehensive quality control of raw materials and pellets is therefore essential. Optical inspection techniques show great promise as they enable fast, simple, and non-destructive analysis. This study demonstrates the potential of shifted excitation Raman difference spectroscopy (SERDS) for inspection of intact feed pellets and their constituents. SERDS combines the ability of conventional Raman spectroscopy to obtain chemically specific information from the sample with efficient fluorescence background rejection capabilities. The latter is an essential prerequisite for the application to highly fluorescent natural samples, for example, feedstuffs. A custom dual-wavelength diode laser with two slightly shifted emission wavelengths (785.2 and 784.6 nm) as required for SERDS is used as excitation light source. Results demonstrate that Raman signals can efficiently be separated from unwanted background contributions allowing for qualitative spatially resolved analysis of chicken feed pellets. Individual constituents present at levels down to 10 g/kg were successfully detected by means of their characteristic spectral signature. This highlights the large potential of SERDS and could pave the way for future inspection of raw materials and pellets at selected points along the process chain.
  • Item
    783 nm wavelength stabilized DBR tapered diode lasers with a 7 W output power
    (Washington, DC : The Optical Society, 2021) Sumpf, Bernd; Theurer, Lara Sophie; Maiwald, Martin; Müller, André; Maaßdorf, André; Fricke, Jörg; Ressel, Peter; Tränkle, Günther
    Wavelength stabilized distributed Bragg reflector (DBR) tapered diode lasers at 783 nm will be presented. The devices are based on GaAsP single quantum wells embedded in a large optical cavity leading to a vertical far field angle of about 29◦ (full width at half maximum). The 3-inch (7.62 cm) wafers are grown using metalorganic vapor phase epitaxy. In a full wafer process, 4 mm long DBR tapered lasers are manufactured. The devices consist of a 500 µm long 10th order surface DBR grating that acts as rear side mirror. After that, a 1 mm long ridge waveguide section is realized for lateral confinement, which is connected to a 2.5 mm long flared section having a full taper angle of 6◦. At an injection current of 8 A, a maximum output power of about 7 W is measured. At output powers up to 6 W, the measured emission width limited by the resolution of the spectrometer is smaller than 19 pm. Measured at 1/e2 level at this output power, the lateral beam waist width is 11.5 µm, the lateral far field angle 12.5◦, and the lateral beam parameter M2 2.5. The respective parameters measured using the second moments are 31 µm, 15.2◦, and 8.3. 70% of the emitted power is originated from the central lobe. © 2021 Optical Society of America
  • Item
    Compact diode laser based light source with alternating dual-wavelength emission at 532 nm
    (Berlin ; Heidelberg : Springer, 2020) Müller, André; Sumpf, Bernd
    Compact nonlinear frequency conversion of a Y-branch distributed Bragg reflector (DBR) diode laser for alternating dual-wavelength laser emission at 532 nm is presented for the very first time. The developed light source, realized on a 5 × 25 mm2 micro-optical bench, is based on single-pass second harmonic generation of a 1064 nm Y-branch DBR diode laser in a periodically poled lithium niobate waveguide crystal with superimposed poling periods. Phase-matching is obtained by intrinsic wavelength stabilization of the laser and wavelength tuning by implemented heater elements above the DBR gratings. Obtained optical output powers of 5.6 mW at 532.45 nm and 6.7 mW at 531.85 nm are limited by central lobe power contents of 52% available for waveguide coupling. With a spectral performance showing narrowband emission with spectral widths of 0.01 nm (0.4 cm−1) limited by the spectral resolution of the spectrum analyzer and a spectral spacing of 0.6 nm (20 cm−1), the developed light source is suitable for applications such as Raman spectroscopy and shifted excitation Raman difference spectroscopy (SERDS). Separate electrical contacts of the Y-branch diode laser enable alternating operation at both wavelengths.
  • Item
    Wide Field Spectral Imaging with Shifted Excitation Raman Difference Spectroscopy Using the Nod and Shuffle Technique
    (Basel : MDPI, 2020) Korinth, Florian; Schmälzlin, Elmar; Stiebing, Clara; Urrutia, Tanya; Micheva, Genoveva; Sandin, Christer; Müller, André; Maiwald, Martin; Sumpf, Bernd; Krafft, Christoph; Tränkle, Günther; Roth, Martin M; Popp, Jürgen
    Wide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup. In our adapted version, the nod corresponds to the change in excitation wavelength, whereas the shuffle corresponds to the shifting of charges up and down on a Charge-Coupled Device (CCD) chip synchronous to the change in excitation wavelength. We coupled this improved wide field SERDS imaging setup to diode lasers with 784.4/785.5 and 457.7/458.9 nm excitation and applied it to samples such as paracetamol and aspirin tablets, polystyrene and polymethyl methacrylate beads, as well as pork meat using multiple accumulations with acquisition times in the range of 50 to 200 ms. The results tackle two main challenges of SERDS imaging: gradual photobleaching changes the autofluorescence background, and multiple readouts of CCD detector prolong the acquisition time.
  • Item
    Mode transitions in DBR semiconductor lasers: experiments, mode analysis and simulations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Radziunas, Mindaugas; Hasler, Karl-Heinz; Sumpf, Bernd; Tien, Tran Quoc; Wenzel, Hans
    The paper is concerned with a general ansatz of a phenomenological evolution model for solid-solid phase transformation kinetics in steel. To model the phase transition of austenite-ferrite, -pearlite or -bainite, a first order nonlinear ordinary differential equation (ODE) is considered. The main goal of this paper is to derive certain conditions for parameters which based on data obtained from transformation diagrams. This leads to a set of independent parameters for which the inverse problem has an unique solution
  • Item
    Accurate in vivo tumor detection using plasmonic-enhanced shifted-excitation Raman difference spectroscopy (SERDS)
    (Wyoming, NSW : Ivyspring, 2021) Strobbia, Pietro; Cupil-Garcia, Vanessa; Crawford, Bridget M.; Fales, Andrew M.; Pfefer, T. Joshua; Liu, Yang; Maiwald, Martin; Sumpf, Bernd; Vo-Dinh, Tuan
    For the majority of cancer patients, surgery is the primary method of treatment. In these cases, accurately removing the entire tumor without harming surrounding tissue is critical; however, due to the lack of intraoperative imaging techniques, surgeons rely on visual and physical inspection to identify tumors. Surface-enhanced Raman scattering (SERS) is emerging as a non-invasive optical alternative for intraoperative tumor identification, with high accuracy and stability. However, Raman detection requires dark rooms to work, which is not consistent with surgical settings. Methods: Herein, we used SERS nanoprobes combined with shifted-excitation Raman difference spectroscopy (SERDS) detection, to accurately detect tumors in xenograft murine model. Results: We demonstrate for the first time the use of SERDS for in vivo tumor detection in a murine model under ambient light conditions. We compare traditional Raman detection with SERDS, showing that our method can improve sensitivity and accuracy for this task. Conclusion: Our results show that this method can be used to improve the accuracy and robustness of in vivo Raman/SERS biomedical application, aiding the process of clinical translation of these technologies. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
  • Item
    Durchstimmbarer-Mikrosystem-Diodenlaser - DuMiDiL : Abschlussbericht
    (Hannover : Technische Informationsbibliothek (TIB), 2012) Sumpf, Bernd; Staske, Ralf; Bawamia, Ahmad; Ginolas, Armin; Blume, Gunnar
    [no abstract available]