Search Results

Now showing 1 - 2 of 2
  • Item
    Impact of synthesis temperature on morphology, rheology and electromagnetic interference shielding of CVD-grown carbon nanotube/polyvinylidene fluoride nanocomposites
    (Lausanne : Elsevier Sequoia, 2017) Mirkhani, Seyyed Alireza; Arjmand, Mohammad; Sadeghi, Soheil; Krause, Beate; Pötschke, Petra; Sundararaj, Uttandaraman
    Employing chemical vapor deposition technique, multi-walled carbon nanotubes (CNTs) were synthesized over Fe catalyst at a broad range of temperatures, i.e. 550° C to 950° C (at 100° C intervals). CNTs were melt-mixed into a polyvinylidene fluoride (PVDF) matrix at various loadings, and then compression molded. Surprisingly, despite the ascending trend of CNT powder conductivity with the synthesis temperature, the nanocomposites made with CNT synthesized at 650° C had significantly lower percolation threshold (around 0.4 wt%) and higher electromagnetic interference shielding effectiveness (EMI SE) (20.3 dB over the X-band for 3.5 wt% CNT and 1.1 mm thickness) than the other temperatures. Exhaustive characterization studies were conducted on both CNTs and composites to unveil their morphological and electrical characteristics. Superior EMI shielding of CNT650° C was attributed to a combination of high carbon purity, aspect ratio, crystallinity, and moderate powder conductivity along with decent state of dispersion within the PVDF matrix.
  • Item
    Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites
    (New York, NY [u.a.] : Pergamon Press, 2016) Arjmand, Mohammad; Chizari, Kambiz; Krause, Beate; Pötschke, Petra; Sundararaj, Uttandaraman
    Different catalysts including Co, Fe, and Ni were used to synthesize nitrogen-doped carbon nanotubes (N-CNTs) by chemical vapor deposition technique. Synthesized N-CNTs were melt mixed with a polyvinylidene fluoride (PVDF) matrix using a small scale mixer at different concentrations ranging from 0.3 to 3.5 wt%, and then compression molded. The characterization techniques revealed significant differences in the synthesis yield and the morphological and electrical properties of both N-CNTs and nanocomposites depending on the catalyst type. Whereas Co and Fe resulted in yields comparable to industrial multiwalled CNTs, Ni was much less effective. The N-CNT aspect ratio was the highest for Co catalyst, followed by Ni and Fe, whereas nitrogen content was the highest for Ni. Raman spectroscopy revealed lowest defect number and highest N-CNT crystallinity for Fe catalyst. Characterization of N-CNT/PVDF nanocomposites showed better dispersion for N-CNTs based on Co and Fe as compared to Ni, and the following order of electrical conductivity and electromagnetic interference shielding (from high to low): Co > Fe > Ni. The superior electrical properties of (N-CNT)Co nanocomposites were ascribed to a combination of high synthesis yield, high aspect ratio, low nitrogen content and high crystallinity of N-CNTs combined with a good state of N-CNT dispersion.