Search Results

Now showing 1 - 2 of 2
  • Item
    Thermo-responsive polymer brushes with side graft chains: Relationship between molecular architecture and underwater adherence
    (Basel : Molecular Diversity Preservation International, 2019) Sidoli, Ugo; Tee, Hisaschi T.; Raguzin, Ivan; Mühldorfer, Jakob; Wurm, Frederik R.; Synytska, Alla
    During the last few decades, wet adhesives have been developed for applications in various fields. Nonetheless, key questions such as the most suitable polymer architecture as well as the most suitable chemical composition remain open. In this article, we investigate the underwater adhesion properties of novel responsive polymer brushes with side graft chain architecture prepared using “grafting through” approach on flat surfaces. The incorporation in the backbone of thermo-responsive poly(N-isopropylacrylamide) (PNIPAm) allowed us to obtain LCST behavior in the final layers. PNIPAm is co-polymerized with poly(methyl ethylene phosphate) (PMEP), a poloyphosphoester. The final materials are characterized studying the surface-grafted polymer as well as the polymer from the bulk solution, and pure PNIPAm brush is used as reference. PNIPAm-g-PMEP copolymers retain the responsive behavior of PNIPAm: when T > LCST, a clear switching of properties is observed. More specifically, all layers above the critical temperature show collapse of the chains, increased hydrophobicity and variation of the surface charge even if no ionizable groups are present. Secondly, effect of adhesion parameters such as debonding rate and contact time is studied. Thirdly, the reversibility of the adhesive properties is confirmed by performing adhesion cycles. Finally, the adhesive properties of the layers are studied below and above the LCST against hydrophilic and hydrophobic substrates. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Tuning the Interactions in Multiresponsive Complex Coacervate-Based Underwater Adhesives
    (Basel : Molecular Diversity Preservation International, 2020) Dompé, Marco; Cedano-Serrano, Francisco J.; Vahdati, Mehdi; Sidoli, Ugo; Heckert, Olaf; Synytska, Alla; Hourdet, Dominique; Creton, Costantino; van der Gucht, Jasper; Kodger, Thomas; Kamperman, Marleen
    In this work, we report the systematic investigation of a multiresponsive complex coacervate-based underwater adhesive, obtained by combining polyelectrolyte domains and thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) units. This material exhibits a transition from liquid to solid but, differently from most reactive glues, is completely held together by non-covalent interactions, i.e., electrostatic and hydrophobic. Because the solidification results in a kinetically trapped morphology, the final mechanical properties strongly depend on the preparation conditions and on the surrounding environment. A systematic study is performed to assess the effect of ionic strength and of PNIPAM content on the thermal, rheological and adhesive properties. This study enables the optimization of polymer composition and environmental conditions for this underwater adhesive system. The best performance with a work of adhesion of 6.5 J/m2 was found for the complex coacervates prepared at high ionic strength (0.75 M NaCl) and at an optimal PNIPAM content around 30% mol/mol. The high ionic strength enables injectability, while the hydrated PNIPAM domains provide additional dissipation, without softening the material so much that it becomes too weak to resist detaching stress. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.