Search Results

Now showing 1 - 3 of 3
  • Item
    Phase transitions for the Boolean model of continuum percolation for Cox point processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Jahnel, Benedikt; Tóbiás, András; Cali, Eli
    We consider the Boolean model with random radii based on Cox point processes. Under a condition of stabilization for the random environment, we establish existence and non-existence of subcritical regimes for the size of the cluster at the origin in terms of volume, diameter and number of points. Further, we prove uniqueness of the infinite cluster for sufficiently connected environments.
  • Item
    Absence of percolation in graphs based on stationary point processes with degrees bounded by two
    (New York, NY [u.a.] : Wiley, 2022) Jahnel, Benedikt; Tóbiás, András
    We consider undirected graphs that arise as deterministic functions of stationary point processes such that each point has degree bounded by two. For a large class of point processes and edge-drawing rules, we show that the arising graph has no infinite connected component, almost surely. In particular, this extends our previous result for signal-to-interference ratio graphs based on stabilizing Cox point processes and verifies the conjecture of Balister and Bollobás that the bidirectional k-nearest neighbor graph of a two-dimensional homogeneous Poisson point process does not percolate for k=2.
  • Item
    SINR percolation for Cox point processes with random powers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Jahnel, Benedikt; Tóbiás, András
    Signal-to-interference plus noise ratio (SINR) percolation is an infinite-range dependent variant of continuum percolation modeling connections in a telecommunication network. Unlike in earlier works, in the present paper the transmitted signal powers of the devices of the network are assumed random, i.i.d. and possibly unbounded. Additionally, we assume that the devices form a stationary Cox point process, i.e., a Poisson point process with stationary random intensity measure, in two or higher dimensions. We present the following main results. First, under suitable moment conditions on the signal powers and the intensity measure, there is percolation in the SINR graph given that the device density is high and interferences are sufficiently reduced, but not vanishing. Second, if the interference cancellation factor γ and the SINR threshold τ satisfy γ ≥ 1/(2τ), then there is no percolation for any intensity parameter. Third, in the case of a Poisson point process with constant powers, for any intensity parameter that is supercritical for the underlying Gilbert graph, the SINR graph also percolates with some small but positive interference cancellation factor.