Search Results

Now showing 1 - 10 of 10
  • Item
    Exponential Moments for Planar Tessellations
    (New York, NY [u.a.] : Springer Science + Business Media B.V., 2020) Jahnel, Benedikt; Tóbiás, András
    In this paper we show existence of all exponential moments for the total edge length in a unit disk for a family of planar tessellations based on stationary point processes. Apart from classical tessellations such as the Poisson–Voronoi, Poisson–Delaunay and Poisson line tessellation, we also treat the Johnson–Mehl tessellation, Manhattan grids, nested versions and Palm versions. As part of our proofs, for some planar tessellations, we also derive existence of exponential moments for the number of cells and the number of edges intersecting the unit disk.
  • Item
    Lower large deviations for geometric functionals
    ([Madralin] : EMIS ELibEMS, 2020) Hirsch, Christian; Jahnel, Benedikt; Tóbiás, András
    This work develops a methodology for analyzing large-deviation lower tails associated with geometric functionals computed on a homogeneous Poisson point process. The technique applies to characteristics expressed in terms of stabilizing score functions exhibiting suitable monotonicity properties. We apply our results to clique counts in the random geometric graph, intrinsic volumes of Poisson–Voronoi cells, as well as power-weighted edge lengths in the random geometric, k-nearest neighbor and relative neighborhood graph.
  • Item
    A Gibbsian model for message routing in highly dense multi-hop networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) König, Wolfgang; Tóbiás, András
    We investigate a probabilistic model for routing in relay-augmented multihop ad-hoc communication networks, where each user sends one message to the base station. Given the (random) user locations, we weigh the family of random, uniformly distributed message trajectories by an exponential probability weight, favouring trajectories with low interference (measured in terms of signal-to-interference ratio) and trajectory families with little congestion (measured by how many pairs of hops use the same relay). Under the resulting Gibbs measure, the system targets the best compromise between entropy, interference and congestion for a common welfare, instead of a selfish optimization. We describe the joint routing strategy in terms of the empirical measure of all message trajectories. In the limit of high spatial density of users, we derive the limiting free energy and analyze the optimal strategy, given as the minimizer(s) of a characteristic variational formula. Interestingly, expressing the congestion term requires introducing an additional empirical measure.
  • Item
    Lower large deviations for geometric functionals
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Hirsch, Christian; Jahnel, Benedikt; Tóbiás, András
    This work develops a methodology for analyzing large-deviation lower tails associated with geometric functionals computed on a homogeneous Poisson point process. The technique applies to characteristics expressed in terms of stabilizing score functions exhibiting suitable monotonicity properties. We apply our results to clique counts in the random geometric graph, intrinsic volumes of Poisson--Voronoi cells, as well as power-weighted edge lengths in the random geometric, κ-nearest neighbor and relative neighborhood graph.
  • Item
    Phase transitions for the Boolean model of continuum percolation for Cox point processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Jahnel, Benedikt; Tóbiás, András; Cali, Eli
    We consider the Boolean model with random radii based on Cox point processes. Under a condition of stabilization for the random environment, we establish existence and non-existence of subcritical regimes for the size of the cluster at the origin in terms of volume, diameter and number of points. Further, we prove uniqueness of the infinite cluster for sufficiently connected environments.
  • Item
    Absence of percolation in graphs based on stationary point processes with degrees bounded by two
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Jahnel, Benedikt; Tóbiás, András
    We consider undirected graphs that arise as deterministic functions of stationary point processes such that each point has degree bounded by two. For a large class of point processes and edge-drawing rules, we show that the arising graph has no infinite connected component, almost surely. In particular, this extends our previous result for SINR graphs based on stabilizing Cox point processes and verifies the conjecture of Balister and Bollobás that the bidirectional $k$-nearest neighbor graph of a two-dimensional homogeneous Poisson point process does not percolate for k=2.
  • Item
    Absence of percolation in graphs based on stationary point processes with degrees bounded by two
    (New York, NY [u.a.] : Wiley, 2022) Jahnel, Benedikt; Tóbiás, András
    We consider undirected graphs that arise as deterministic functions of stationary point processes such that each point has degree bounded by two. For a large class of point processes and edge-drawing rules, we show that the arising graph has no infinite connected component, almost surely. In particular, this extends our previous result for signal-to-interference ratio graphs based on stabilizing Cox point processes and verifies the conjecture of Balister and Bollobás that the bidirectional k-nearest neighbor graph of a two-dimensional homogeneous Poisson point process does not percolate for k=2.
  • Item
    Routeing properties in a Gibbsian model for highly dense multihop networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) König, Wolfgang; Tóbiás, András
    We investigate a probabilistic model for routeing in a multihop ad-hoc communication network, where each user sends a message to the base station. Messages travel in hops via the other users, used as relays. Their trajectories are chosen at random according to a Gibbs distribution that favours trajectories with low interference, measured in terms of sum of the signal-to-interference ratios for all the hops, and collections of trajectories with little total congestion, measured in terms of the number of pairs of hops arriving at each relay. This model was introduced in our earlier paper [KT17], where we expressed, in the high-density limit, the distribution of the optimal trajectories as the minimizer of a characteristic variational formula. In the present work, in the special case in which congestion is not penalized, we derive qualitative properties of this minimizer. We encounter and quantify emerging typical pictures in analytic terms in three extreme regimes. We analyze the typical number of hops and the typical length of a hop, and the deviation of the trajectory from the straight line in two regimes, (1) in the limit of a large communication area and large distances, and (2) in the limit of a strong interference weight. In both regimes, the typical trajectory turns out to quickly approach a straight line, in regime (1) with equally-sized hops. Surprisingly, in regime (1), the typical length of a hop diverges logarithmically as the distance of the transmitter to the base station diverges. We further analyze the local and global repulsive effect of (3) a densely populated area on the trajectories. Our findings are illustrated by numerical examples. We also discuss a game-theoretic relation of our Gibbsian model with a joint optimization of message trajectories opposite to a selfish optimization, in case congestion is also penalized.
  • Item
    SINR percolation for Cox point processes with random powers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Jahnel, Benedikt; Tóbiás, András
    Signal-to-interference plus noise ratio (SINR) percolation is an infinite-range dependent variant of continuum percolation modeling connections in a telecommunication network. Unlike in earlier works, in the present paper the transmitted signal powers of the devices of the network are assumed random, i.i.d. and possibly unbounded. Additionally, we assume that the devices form a stationary Cox point process, i.e., a Poisson point process with stationary random intensity measure, in two or higher dimensions. We present the following main results. First, under suitable moment conditions on the signal powers and the intensity measure, there is percolation in the SINR graph given that the device density is high and interferences are sufficiently reduced, but not vanishing. Second, if the interference cancellation factor γ and the SINR threshold τ satisfy γ ≥ 1/(2τ), then there is no percolation for any intensity parameter. Third, in the case of a Poisson point process with constant powers, for any intensity parameter that is supercritical for the underlying Gilbert graph, the SINR graph also percolates with some small but positive interference cancellation factor.
  • Item
    Exponential moments for planar tessellations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Tóbiás, András; Jahnel, Benedikt
    In this paper we show existence of all exponential moments for the total edge length in a unit disc for a family of planar tessellations based on Poisson point processes. Apart from classical such tessellations like the PoissonVoronoi, PoissonDelaunay and Poisson line tessellation, we also treat the JohnsonMehl tessellation, Manhattan grids, nested versions and Palm versions. As part of our proofs, for some planar tessellations, we also derive existence of exponential moments for the number of cells and the number of edges intersecting the unit disk.