Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Substrate Developments for the Chemical Vapor Deposition Synthesis of Graphene

2020, Shi, Q., Tokarska, K., Ta, H.Q., Yang, X., Liu, Y., Ullah, S., Liu, L., Trzebicka, B., Bachmatiuk, A., Sun, J., Fu, L., Liu, Z., Rümmeli, M.H.

Since the isolation of graphene and numerous demonstrations of its unique properties, the expectations for this material to be implemented in many future commercial applications have been enormous. However, to date, challenges still remain. One of the key challenges is the fabrication of graphene in a manner that satisfies processing requirements. While transfer of graphene can be used, this tends to damage or contaminate it, which degrades its performance. Hence, there is an important drive to grow graphene directly over a number of technologically important materials, viz., different substrate materials, so as to avoid the need for transfer. One of the more successful approaches to synthesis graphene is chemical vapor deposition (CVD), which is well established. Historically, transition metal substrates are used due to their catalytic properties. However, in recent years this has developed to include many nonmetal substrate systems. Moreover, both solid and molten substrate forms have also been demonstrated. In addition, the current trend to progress flexible devices has spurred interest in graphene growth directly over flexible materials surfaces. All these aspects are presented in this review which presents the developments in available substrates for graphene fabrication by CVD, with a focus primarily on large area graphene.

Loading...
Thumbnail Image
Item

Direct chemical vapor deposition synthesis of large area single-layer brominated graphene

2019, Hasan, M., Meiou, W., Yulian, L., Ullah, S., Ta, H.Q., Zhao, L., Mendes, R.G., Malik, Z.P., Ahmad, N.M., Liu, Z., Rümmeli, M.H.

Graphene and its derivatives such as functionalized graphene are considered to hold significant promise in numerous applications. Within that context, halogen functionalization is exciting for radical and nucleophilic substitution reactions as well as for the grafting of organic moieties. Historically, the successful covalent doping of sp2 carbon with halogens, such as bromine, was demonstrated with carbon nanotubes. However, the direct synthesis of brominated graphene has thus far remained elusive. In this study we show how large area brominated graphene with C-Br bonds can be achieved directly (i.e. a single step) using hydrogen rich low pressure chemical vapor deposition. The direct synthesis of brominated graphene could lead to practical developments. © The Royal Society of Chemistry.