Search Results

Now showing 1 - 9 of 9
  • Item
    More Specific Signal Detection in Functional Magnetic Resonance Imaging by False Discovery Rate Control for Hierarchically Structured Systems of Hypotheses
    (San Francisco, California, US : PLOS, 2016) Schildknecht, Konstantin; Tabelow, Karsten; Dickhaus, Thorsten
    Signal detection in functional magnetic resonance imaging (fMRI) inherently involves the problem of testing a large number of hypotheses. A popular strategy to address this multiplicity is the control of the false discovery rate (FDR). In this work we consider the case where prior knowledge is available to partition the set of all hypotheses into disjoint subsets or families, e. g., by a-priori knowledge on the functionality of certain regions of interest. If the proportion of true null hypotheses differs between families, this structural information can be used to increase statistical power. We propose a two-stage multiple test procedure which first excludes those families from the analysis for which there is no strong evidence for containing true alternatives. We show control of the family-wise error rate at this first stage of testing. Then, at the second stage, we proceed to test the hypotheses within each non-excluded family and obtain asymptotic control of the FDR within each family at this second stage. Our main mathematical result is that this two-stage strategy implies asymptotic control of the FDR with respect to all hypotheses. In simulations we demonstrate the increased power of this new procedure in comparison with established procedures in situations with highly unbalanced families. Finally, we apply the proposed method to simulated and to real fMRI data.
  • Item
    High-resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing
    (Lausanne : Frontiers Research Foundation, 2015) Mohammadi, Siawoosh; Tabelow, Karsten; Ruthotto, Lars; Feiweier, Thorsten; Polzehl, Jörg; Weiskopf, Nikolaus
    Diffusion Kurtosis Imaging (DKI) is more sensitive to microstructural differences and can be related to more specific micro-scale metrics (e.g., intra-axonal volume fraction) than diffusion tensor imaging (DTI), offering exceptional potential for clinical diagnosis and research into the white and gray matter. Currently DKI is acquired only at low spatial resolution (2–3 mm isotropic), because of the lower signal-to-noise ratio (SNR) and higher artifact level associated with the technically more demanding DKI. Higher spatial resolution of about 1 mm is required for the characterization of fine white matter pathways or cortical microstructure. We used restricted-field-of-view (rFoV) imaging in combination with advanced post-processing methods to enable unprecedented high-quality, high-resolution DKI (1.2 mm isotropic) on a clinical 3T scanner. Post-processing was advanced by developing a novel method for Retrospective Eddy current and Motion ArtifacT Correction in High-resolution, multi-shell diffusion data (REMATCH). Furthermore, we applied a powerful edge preserving denoising method, denoted as multi-shell orientation-position-adaptive smoothing (msPOAS). We demonstrated the feasibility of high-quality, high-resolution DKI and its potential for delineating highly myelinated fiber pathways in the motor cortex. REMATCH performs robustly even at the low SNR level of high-resolution DKI, where standard EC and motion correction failed (i.e., produced incorrectly aligned images) and thus biased the diffusion model fit. We showed that the combination of REMATCH and msPOAS increased the contrast between gray and white matter in mean kurtosis (MK) maps by about 35% and at the same time preserves the original distribution of MK values, whereas standard Gaussian smoothing strongly biases the distribution.
  • Item
    Numerical simulation of TEM images for In(Ga)As/GaAs quantum dots with various shapes
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Maltsi, Anieza; Niermann, Tore; Streckenbach, Timo; Tabelow, Karsten; Koprucki, Thomas
    We present a mathematical model and a tool chain for the numerical simulation of TEM images of semiconductor quantum dots (QDs). This includes elasticity theory to obtain the strain profile coupled with the Darwin–Howie–Whelan equations, describing the propagation of the electron wave through the sample. We perform a simulation study on indium gallium arsenide QDs with different shapes and compare the resulting TEM images to experimental ones. This tool chain can be applied to generate a database of simulated TEM images, which is a key element of a novel concept for model-based geometry reconstruction of semiconductor QDs, involving machine learning techniques.
  • Item
    Improving Accuracy and Temporal Resolution of Learning Curve Estimation for within- and across-Session Analysis
    (San Francisco, California, US : PLOS, 2016) Deliano, Matthias; Tabelow, Karsten; König, Reinhard; Polzehl, Jörg
    Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning.
  • Item
    Patch-Wise Adaptive Weights Smoothing in R
    (Los Angeles, Calif. : UCLA, Dept. of Statistics, 2020) Polzehl, Jörg; Papafitsoros, Kostas; Tabelow, Karsten
    Image reconstruction from noisy data has a long history of methodological development and is based on a variety of ideas. In this paper we introduce a new method called patch-wise adaptive smoothing, that extends the propagation-separation approach by using comparisons of local patches of image intensities to define local adaptive weighting schemes for an improved balance of reduced variability and bias in the reconstruction result. We present the implementation of the new method in an R package aws and demonstrate its properties on a number of examples in comparison with other state-of-the art image reconstruction methods. © 2020, American Statistical Association. All rights reserved.
  • Item
    Axisymmetric diffusion kurtosis imaging with Rician bias correction: A simulation study
    (New York, NY : Wiley-Liss, 2022) Oeschger, Jan Malte; Tabelow, Karsten; Mohammadi, Siawoosh
    Purpose: To compare the estimation accuracy of axisymmetric diffusion kurtosis imaging (DKI) and standard DKI in combination with Rician bias correction (RBC). Methods: Axisymmetric DKI is more robust against noise-induced variation in the measured signal than standard DKI because of its reduced parameter space. However, its susceptibility to Rician noise bias at low signal-to-noise ratios (SNR) is unknown. Here, we investigate two main questions: first, does RBC improve estimation accuracy of axisymmetric DKI?; second, is estimation accuracy of axisymmetric DKI increased compared to standard DKI? Estimation accuracy was investigated on the five axisymmetric DKI tensor metrics (AxTM): the parallel and perpendicular diffusivity and kurtosis and mean of the kurtosis tensor, using a noise simulation study based on synthetic data of tissues with varying fiber alignment and in-vivo data focusing on white matter. Results: RBC mainly increased accuracy for the parallel AxTM in tissues with highly to moderately aligned fibers. For the perpendicular AxTM, axisymmetric DKI without RBC performed slightly better than with RBC. However, the combination of axisymmetric DKI with RBC was the overall best performing algorithm across all five AxTM in white matter and axisymmetric DKI itself substantially improved accuracy in axisymmetric tissues with low fiber alignment. Conclusion: Combining axisymmetric DKI with RBC facilitates accurate DKI parameter estimation at unprecedented low SNRs ((Formula presented.)) in white matter, possibly making it a valuable tool for neuroscience and clinical research studies where scan time is a limited resource. The tools used here are available in the open-source ACID toolbox for SPM.
  • Item
    Correction to: Numerical simulation of TEM images for In(Ga)As/GaAs quantum dots with various shapes
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Maltsi, Anieza; Niermann, Tore; Streckenbach, Timo; Tabelow, Karsten; Koprucki, Thomas
    Correction to: Optical and Quantum Electronics (2020) 52:257 https://doi.org/10.1007/s11082-020-02356-y
  • Item
    Example dataset for the hMRI toolbox
    (Amsterdam [u.a.] : Elsevier, 2019) Callaghan, Martina F.; Lutti, Antoine; Ashburner, John; Balteau, Evelyne; Corbin, Nadège; Draganski, Bogdan; Helms, Gunther; Kherif, Ferath; Leutritz, Tobias; Mohammadi, Siawoosh; Phillips, Christophe; Reimer, Enrico; Ruthotto, Lars; Seif, Maryam; Tabelow, Karsten; Ziegler, Gabriel; Weiskopf, Nikolaus
    The hMRI toolbox is an open-source toolbox for the calculation of quantitative MRI parameter maps from a series of weighted imaging data, and optionally additional calibration data. The multi-parameter mapping (MPM) protocol, incorporating calibration data to correct for spatial variation in the scanner's transmit and receive fields, is the most complete protocol that can be handled by the toolbox. Here we present a dataset acquired with such a full MPM protocol, which is made freely available to be used as a tutorial by following instructions provided on the associated toolbox wiki pages, which can be found at http://hMRI.info, and following the theory described in: hMRI – A toolbox for quantitative MRI in neuroscience and clinical research [1].
  • Item
    hMRI - A toolbox for quantitative MRI in neuroscience and clinical research
    (Orlando, Fla. : Academic Press, 2019) Tabelow, Karsten; Balteau, Evelyne; Ashburner, John; Callaghan, Martina F.; Draganski, Bogdan; Helms, Gunther; Kherif, Ferath; Leutritz, Tobias; Lutti, Antoine; Phillips, Christophe; Reimer, Enrico; Ruthotto, Lars; Seif, Maryam; Weiskopf, Nikolaus; Ziegler, Gabriel; Mohammadi, Siawoosh
    Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates and , proton density and magnetisation transfer saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research.