Search Results

Now showing 1 - 2 of 2
  • Item
    A High-Voltage, Dendrite-Free, and Durable Zn–Graphite Battery
    (Weinheim : Wiley-VCH, 2019) Wang, Gang; Kohn, Benjamin; Scheler, Ulrich; Wang, Faxing; Oswald, Steffen; Löffler, Markus; Tan, Deming; Zhang, Panpan; Zhang, Jian; Feng, Xinliang
    The intrinsic advantages of metallic Zn, like high theoretical capacity (820 mAh g−1), high abundance, low toxicity, and high safety have driven the recent booming development of rechargeable Zn batteries. However, the lack of high-voltage electrolyte and cathode materials restricts the cell voltage mostly to below 2 V. Moreover, dendrite formation and the poor rechargeability of the Zn anode hinder the long-term operation of Zn batteries. Here a high-voltage and durable Zn–graphite battery, which is enabled by a LiPF6-containing hybrid electrolyte, is reported. The presence of LiPF6 efficiently suppresses the anodic oxidation of Zn electrolyte and leads to a super-wide electrochemical stability window of 4 V (vs Zn/Zn2+). Both dendrite-free Zn plating/stripping and reversible dual-anion intercalation into the graphite cathode are realized in the hybrid electrolyte. The resultant Zn–graphite battery performs stably at a high voltage of 2.8 V with a record midpoint discharge voltage of 2.2 V. After 2000 cycles at a high charge–discharge rate, high capacity retention of 97.5% is achieved with ≈100% Coulombic efficiency. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    Polymer Brushes on Graphitic Carbon Nitride for Patterning and as a SERS Active Sensing Layer via Incorporated Nanoparticles
    (Washington, DC : Soc., 2020) Sheng, Wenbo; Li, Wei; Tan, Deming; Zhang, Panpan; Zhang, En; Sheremet, Evgeniya; Schmidt, Bernhard V.K.J.; Feng, Xinliang; Rodriguez, Raul D.; Jordan, Rainer; Amin, Ihsan
    Graphitic carbon nitride (gCN) has a broad range of promising applications, from energy harvesting and storage to sensing. However, most of the applications are still restricted due to gCN poor dispersibility and limited functional groups. Herein, a direct photografting of gCN using various polymer brushes with tailorable functionalities via UV photopolymerization at ambient conditions is demonstrated. The systematic study of polymer brush-functionalized gCN reveals that the polymerization did not alter the inherent structure of gCN. Compared to the pristine gCN, the gCN-polymer composites show good dispersibility in various solvents such as water, ethanol, and tetrahydrofuran (THF). Patterned polymer brushes on gCN can be realized by employing photomask and microcontact printing technology. The polymer brushes with incorporated silver nanoparticles (AgNPs) on gCN can act as a multifunctional recyclable active sensing layer for surface-enhanced Raman spectroscopy (SERS) detection and photocatalysis. This multifunctionality is shown in consecutive cycles of SERS and photocatalytic degradation processes that can be applied to in situ monitor pollutants, such as dyes or pharmaceutical waste, with high chemical sensitivity as well as to water remediation. This dual functionality provides a significant advantage to our AgNPs/polymer-gCN with regard to state-of-the-art systems reported so far that only allow SERS pollutant detection but not their decomposition. These results may provide a new methodology for the covalent functionalization of gCN and may enable new applications in the field of catalysis, biosensors, and, most interestingly, environmental remediation. Copyright © 2020 American Chemical Society.