Search Results

Now showing 1 - 2 of 2
  • Item
    Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and South-to-North Water Diversion
    (Hoboken, NJ : Wiley-Blackwell, 2020) Yin, Yuanyuan; Wang, Lei; Wang, Zhongjing; Tang, Qiuhong; Piao, Shilong; Chen, Deliang; Xia, Jun; Conradt, Tobias; Liu, Junguo; Wada, Yoshihide; Cai, Ximing; Xie, Zhenghui; Duan, Qingyun; Li, Xiuping; Zhou, Jing; Zhang, Jianyun
    With the increasing pressure from population growth and economic development, northern China (NC) faces a grand challenge of water scarcity, which can be further exacerbated by climatic and societal changes. The South-to-North Water Diversion (SNWD) project is designed to mitigate the water scarcity in NC. However, few studies have quantified the impact of the SNWD on water scarcity within the context of climatic and societal changes and its potential effects on economic and agricultural food in the region. We used water supply stress index (WaSSI) to quantify water scarcity within the context of environmental change in NC and developed a method to estimate the economic and agricultural impacts of the SNWD. Focuses were put on alleviating the water supply shortage and economic and agricultural benefits for the water-receiving NC. We find that societal changes, especially economic growth, are the major contributors to water scarcity in NC during 2009–2099. To completely mitigate the water scarcity of NC, at least an additional water supply of 13 billion m3/year (comparable to the annual diversion water by SNWD Central Route) will be necessary. Although SNWD alone cannot provide the full solution to NC's water shortage in next few decades, it can significantly alleviate the water supply stress in NC (particularly Beijing), considerably increasing the agricultural production (more than 115 Tcal/year) and bringing economic benefits (more than 51 billion RMB/year) through supplying industrial and domestic water use. Additionally, the transfer project could have impacts on the ecological environment in the exporting regions. ©2020. The Authors.
  • Item
    Multimodel assessments of human and climate impacts on mean annual streamflow in China
    (Munich : EGU, 2019) Liu, Xingcai; Liu, Wenfeng; Yang, Hong; Tang, Qiuhong; Flörke, Martina; Masaki, Yoshimitsu; Müller Schmied, Hannes; Ostberg, Sebastian; Pokhrel, Yadu; Satoh, Yusuke; Wada, Yoshihide
    Human activities, as well as climate variability, have had increasing impacts on natural hydrological systems, particularly streamflow. However, quantitative assessments of these impacts are lacking on large scales. In this study, we use the simulations from six global hydrological models driven by three meteorological forcings to investigate direct human impact (DHI) and climate impact on streamflow in China. Results show that, in the sub-periods of 1971-1990 and 1991-2010, one-fifth to one-third of mean annual streamflow (MAF) was reduced due to DHI in northern basins, and much smaller ( 4 %) MAF was reduced in southern basins. From 1971-1990 to 1991-2010, total MAF changes range from-13%to 10%across basins wherein the relative contributions of DHI change and climate variability show distinct spatial patterns. DHI change caused decreases in MAF in 70% of river segments, but climate variability dominated the total MAF changes in 88% of river segments of China. In most northern basins, climate variability results in changes of-9% to 18% in MAF, while DHI change results in decreases of 2% to 8% in MAF. In contrast with the climate variability that may increase or decrease streamflow, DHI change almost always contributes to decreases in MAF over time, with water withdrawals supposedly being the major impact on streamflow. This quantitative assessment can be a reference for attribution of streamflow changes at large scales, despite remaining uncertainty. We highlight the significant DHI in northern basins and the necessity to modulate DHI through improved water management towards a better adaptation to future climate change. © 2019 Author(s).