Search Results

Now showing 1 - 2 of 2
  • Item
    High‐resolution reflection seismics reveal the structure and the evolution of the Quaternary glacial Tannwald Basin
    (Oxford : Wiley, 2018) Burschil, Thomas; Buness, Hermann; Tanner, David C.; Wielandt‐Schuster, Ulrike; Ellwanger, Dietrich; Gabriel, Gerald
    Over-deepened basins exist throughout the Alpine realm. Improving our knowledge on these basins is of high social relevance, since these areas are often well-populated and they possess, for instance, unusual hydrological settings. Nonetheless, geophysical and sedimentological investigations of over-deepened basins are rare. We analyse the sedimentary succession of such a basin, the Tannwald Basin, through geological interpretation of seismic reflection profiles. The basin is located approximately 60 km north of the European Alps. It was incised into Tertiary molasse sediments by the Rhine Glacier and later filled by glacial, fluvial, and lacustrine deposits of 250 m thickness. The Leibniz Institute for Applied Geophysics acquired a grid of five high-resolution seismic reflection lines that imaged till the deepest parts of the Tannwald Basin. The seismic profiles, processed to a pre-stack depth migration level, allow a detailed geological interpretation that is calibrated with the help of a nearby borehole. We determine the structure and the seismic facies of the sediment succession in the basin and presume the following hypothesis of the evolution of the basin: sub-glacial erosion comprises the excavation of the over-deepened basin as well as detachment of large fragments of molasse material. These molasse slabs were deposited within the basin in a layer of basal till that graded upwards in water-lain till and fine-grained deposits. During the last two glaciations, the basinal structure became buried by till sequences and glacio-fluvial sediments.
  • Item
    Visualisation and analysis of shear-deformation bands in unconsolidated Pleistocene sand using ground-penetrating radar: Implications for paleoseismological studies
    (Amsterdam [u.a.] : Elsevier, 2018) Brandes, Christian; Igel, Jan; Loewer, Markus; Tanner, David C.; Lang, Jörg; Müller, Katharina; Winsemann, Jutta
    Deformation bands in unconsolidated sediments are of great value for paleoseismological studies in sedimentary archives. Using ground-penetrating radar (GPR), we investigated an array of shear-deformation bands that developed in unconsolidated Pleistocene glacifluvial Gilbert-type delta sediments. A dense grid (spacing 0.6 m) of GPR profiles was measured on top of a 20 m-long outcrop that exposes shear-deformation bands. Features in the radargrams could be directly tied to the exposure. The shear-deformation bands are partly represented by inclined reflectors and partly by the offset of reflections at delta clinoforms. 3-D interpretation of the 2-D radar sections shows that the bands have near-planar geometries that can be traced throughout the entire sediment volume. Thin sections of sediment samples show that the analysed shear-deformation bands have a denser grain packing than the host sediment. Thus they have a lower porosity and smaller pore sizes and therefore, in the vadose zone, the deformation bands have a higher water content due to enhanced capillary forces. This, together with the partially-developed weak calcite cementation and the distinct offset along the bands, are likely the main reasons for the clear and unambiguous expression of the shear-deformation bands in the radar survey. The study shows that deformation-band arrays can clearly be detected using GPR and quickly mapped over larger sediment volumes. With the 3-D analysis, it is further possible to derive the orientation and geometry of the bands. This allows correlation of the bands with the regional fault trend. Studying deformation bands in unconsolidated sediments with GPR is therefore a powerful approach in paleoseismological studies. Based on our data, we postulate that the outcrop is part of a dextral strike-slip zone that was reactivated by glacial isostatic adjustment.