Search Results

Now showing 1 - 2 of 2
  • Item
    Phonon-Polaritonic Bowtie Nanoantennas: Controlling Infrared Thermal Radiation at the Nanoscale
    (Washington, DC : ACS Publications, 2017) Wang, Tao; Li, Peining; Chigrin, Dmitry N.; Giles, Alexander J.; Bezares, Francisco J.; Glembocki, Orest J.; Caldwell, Joshua D.; Taubner, Thomas
    A conventional thermal emitter exhibits a broad emission spectrum with a peak wavelength depending upon the operation temperature. Recently, narrowband thermal emission was realized with periodic gratings or single microstructures of polar crystals supporting distinct optical modes. Here, we exploit the coupling of adjacent phonon-polaritonic nanostructures, demonstrating experimentally that the nanometer-scale gaps can control the thermal emission frequency while retaining emission line widths as narrow as 10 cm-1. This was achieved by using deeply subdiffractional bowtie-shaped silicon carbide nanoantennas. Infrared far-field reflectance spectroscopy, near-field optical nanoimaging, and full-wave electromagnetic simulations were employed to prove that the thermal emission originates from strongly localized surface phonon-polariton resonances of nanoantenna structures. The observed narrow emission line widths and exceptionally small modal volumes provide new opportunities for the user-design of near- and far-field radiation patterns for advancements in infrared spectroscopy, sensing, signaling, communications, coherent thermal emission, and infrared photodetection. © 2017 American Chemical Society.
  • Item
    Advanced Optical Programming of Individual Meta-Atoms Beyond the Effective Medium Approach
    (Weinheim : Wiley-VCH, 2019) Michel, Ann-Katrin U.; Heßler, Andreas; Meyer, Sebastian; Pries, Julian; Yu, Yuan; Kalix, Thomas; Lewin, Martin; Hanss, Julian; De Rose, Angela; Maß, Tobias W.W.; Wuttig, Matthias; Chigrin, Dmitry N.; Taubner, Thomas
    Nanometer-thick active metasurfaces (MSs) based on phase-change materials (PCMs) enable compact photonic components, offering adjustable functionalities for the manipulation of light, such as polarization filtering, lensing, and beam steering. Commonly, they feature multiple operation states by switching the whole PCM fully between two states of drastically different optical properties. Intermediate states of the PCM are also exploited to obtain gradual resonance shifts, which are usually uniform over the whole MS and described by effective medium response. For programmable MSs, however, the ability to selectively address and switch the PCM in individual meta-atoms is required. Here, simultaneous control of size, position, and crystallization depth of the switched phase-change material (PCM) volume within each meta-atom in a proof-of-principle MS consisting of a PCM-covered Al–nanorod antenna array is demonstrated. By modifying optical properties locally, amplitude and light phase can be programmed at the meta-atom scale. As this goes beyond previous effective medium concepts, it will enable small adaptive corrections to external aberrations and fabrication errors or multiple complex functionalities programmable on the same MS. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim