Search Results

Now showing 1 - 2 of 2
  • Item
    The global aerosol-climate model echam6.3-ham2.3 -Part 1: Aerosol evaluation
    (Göttingen : Copernicus GmbH, 2019) Tegen, I.; Neubauer, D.; Ferrachat, S.; Drian, C.S.-L.; Bey, I.; Schutgens, N.; Stier, P.; Watson-Parris, D.; Stanelle, T.; Schmidt, H.; Rast, S.; Kokkola, H.; Schultz, M.; Schroeder, S.; Daskalakis, N.; Barthel, S.; Heinold, B.; Lohmann, U.
    We introduce and evaluate aerosol simulations with the global aerosol-climate model ECHAM6.3-HAM2.3, which is the aerosol component of the fully coupled aerosol-chemistry-climate model ECHAM-HAMMOZ. Both the host atmospheric climate model ECHAM6.3 and the aerosol model HAM2.3 were updated from previous versions. The updated version of the HAM aerosol model contains improved parameterizations of aerosol processes such as cloud activation, as well as updated emission fields for anthropogenic aerosol species and modifications in the online computation of sea salt and mineral dust aerosol emissions. Aerosol results from nudged and free-running simulations for the 10-year period 2003 to 2012 are compared to various measurements of aerosol properties. While there are regional deviations between the model and observations, the model performs well overall in terms of aerosol optical thickness, but may underestimate coarse-mode aerosol concentrations to some extent so that the modeled particles are smaller than indicated by the observations. Sulfate aerosol measurements in the US and Europe are reproduced well by the model, while carbonaceous aerosol species are biased low. Both mineral dust and sea salt aerosol concentrations are improved compared to previous versions of ECHAM-HAM. The evaluation of the simulated aerosol distributions serves as a basis for the suitability of the model for simulating aerosol-climate interactions in a changing climate.
  • Item
    Seasonal variability of Saharan desert dust and ice nucleating particles over Europe
    (München : European Geopyhsical Union, 2015) Hande, L.B.; Engler, C.; Hoose, C.; Tegen, I.
    Dust aerosols are thought to be the main contributor to atmospheric ice nucleation. While there are case studies supporting this, a climatological sense of the importance of dust to atmospheric ice nucleating particle (INP) concentrations and its seasonal variability over Europe is lacking. Here, we use a mesoscale model to estimate Saharan dust concentrations over Europe in 2008. There are large differences in median dust concentrations between seasons, with the highest concentrations and highest variability in the lower to mid-troposphere. Laboratory-based ice nucleation parameterisations are applied to these simulated dust number concentrations to calculate the potential INP resulting from immersion freezing and deposition nucleation on these dust particles. The potential INP concentrations increase exponentially with height due to decreasing temperatures in the lower and mid-troposphere. When the ice-activated fraction increases sufficiently, INP concentrations follow the dust particle concentrations. The potential INP profiles exhibit similarly large differences between seasons, with the highest concentrations in spring (median potential immersion INP concentrations nearly 105 m−3, median potential deposition INP concentrations at 120% relative humidity with respect to ice over 105 m−3), about an order of magnitude larger than those in summer. Using these results, a best-fit function is provided to estimate the potential INPs for use in limited-area models, which is representative of the normal background INP concentrations over Europe. A statistical evaluation of the results against field and laboratory measurements indicates that the INP concentrations are in close agreement with observations.