Search Results

Now showing 1 - 5 of 5
  • Item
    Indicative Marker Microbiome Structures Deduced from the Taxonomic Inventory of 67 Full-Scale Anaerobic Digesters of 49 Agricultural Biogas Plants
    (Basel : MDPI, 2021) Hassa, Julia; Klang, Johanna; Benndorf, Dirk; Pohl, Marcel; Hülsemann, Benedikt; Mächtig, Torsten; Effenberger, Mathias; Pühler, Alfred; Schlüter, Andreas; Theuerl, Susanne
    There are almost 9500 biogas plants in Germany, which are predominantly operated with energy crops and residues from livestock husbandry over the last two decades. In the future, biogas plants must be enabled to use a much broader range of input materials in a flexible and demand-oriented manner. Hence, the microbial communities will be exposed to frequently varying process conditions, while an overall stable process must be ensured. To accompany this transition, there is the need to better understand how biogas microbiomes respond to management measures and how these responses affect the process efficiency. Therefore, 67 microbiomes originating from 49 agricultural, full-scale biogas plants were taxonomically investigated by 16S rRNA gene amplicon sequencing. These microbiomes were separated into three distinct clusters and one group of outliers, which are characterized by a specific distribution of 253 indicative taxa and their relative abundances. These indicative taxa seem to be adapted to specific process conditions which result from a different biogas plant operation. Based on these results, it seems to be possible to deduce/assess the general process condition of a biogas digester based solely on the microbiome structure, in particular on the distribution of specific indicative taxa, and without knowing the corresponding operational and chemical process parameters. Perspectively, this could allow the development of detection systems and advanced process models considering the microbial diversity.
  • Item
    Dynamic variation of the microbial community structure during the long-time mono-fermentation of maize and sugar beet silage
    (Milton Park : Taylor & Francis, 2015) Klang, Johanna; Theuerl, Susanne; Szewzyk, Ulrich; Huth, Markus; Tölle, Rainer; Klocke, Michael
    This study investigated the development of the microbial community during a long-term (337 days) anaerobic digestion of maize and sugar beet silage, two feedstocks that significantly differ in their chemical composition. For the characterization of the microbial dynamics, the community profiling method terminal restriction fragment length polymorphism (TRFLP) in combination with a cloning-sequencing approach was applied. Our results revealed a specific adaptation of the microbial community to the supplied feedstocks. Based on the high amount of complex compounds, the anaerobic conversion rate of maize silage was slightly lower compared with the sugar beet silage. It was demonstrated that members from the phylum Bacteroidetes are mainly involved in the degradation of low molecular weight substances such as sugar, ethanol and acetate, the main compounds of the sugar beet silage. It was further shown that species of the genus Methanosaeta are highly sensitive against sudden stress situations such as a strong decrease in the ammonium nitrogen (NH4 +-N) concentration or a drop of the pH value. In both cases, a functional compensation by members of the genera Methanoculleus and/or Methanosarcina was detected. However, the overall biomass conversion of both feedstocks proceeded efficiently as a steady state between acid production and consumption was recorded, which further resulted in an equal biogas yield.
  • Item
    Effect of a Profound Feedstock Change on the Structure and Performance of Biogas Microbiomes
    (Basel : MDPI AG, 2020) Klang, Johanna; Szewzyk, Ulrich; Bock, Daniel; Theuerl, Susanne
    In this study the response of biogas-producing microbiomes to a profound feedstock change was investigated. The microbiomes were adapted to the digestion of either 100% sugar beet, maize silage, or of the silages with elevated amounts of total ammonium nitrogen (TAN) by adding ammonium carbonate or animal manure. The feedstock exchange resulted in a short-range decrease or increase in the biogas yields according to the level of chemical feedstock complexity. Fifteen taxa were found in all reactors and can be considered as generalists. Thirteen taxa were detected in the reactors operated with low TAN and six in the reactors with high TAN concentration. Taxa assigned to the phylum Bacteroidetes and to the order Spirochaetales increased with the exchange to sugar beet silage, indicating an affinity to easily degradable compounds. The recorded TAN-sensitive taxa (phylum Cloacimonetes) showed no specific affinity to maize or sugar beet silage. The archaeal community remained unchanged. The reported findings showed a smooth adaptation of the microbial communities, without a profound negative impact on the overall biogas production indicating that the two feedstocks, sugar beet and maize silage, potentially do not contain chemical compounds that are difficult to handle during anaerobic digestion.
  • Item
    Microbiome diversity and community-level change points within manure-based small biogas plants
    (Basel : MDPI AG, 2020) Theuerl, Susanne; Klang, Johanna; Hülsemann, Benedikt; Mächtig, Torsten; Hassa, Julia
    Efforts to integrate biogas plants into bioeconomy concepts will lead to an expansion of manure-based (small) biogas plants, while their operation is challenging due to critical characteristics of some types of livestock manure. For a better process understanding, in this study, three manure-based small biogas plants were investigated with emphasis on microbiome diversity. Due to varying digester types, feedstocks, and process conditions, 16S rRNA gene amplicon sequencing showed differences in the taxonomic composition. Dynamic variations of each investigated biogas plant microbiome over time were analyzed by terminal restriction fragment length polymorphism (TRFLP), whereby nonmetric multidimensional scaling (NMDS) revealed two well-running systems, one of them with a high share of chicken manure, and one unstable system. By using Threshold Indicator Taxa Analysis (TITAN), community-level change points at ammonium and ammonia concentrations of 2.25 g L-1 and 193 mg L-1 or volatile fatty acid concentrations of 0.75 g L-1were reliably identified which are lower than the commonly reported thresholds for critical process stages based on chemical parameters. Although a change in the microbiome structure does not necessarily indicate an upcoming critical process stage, the recorded community-level change points might be a first indication to carefully observe the process. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Terminal restriction fragment length polymorphism is an “old school” reliable technique for swift microbial community screening in anaerobic digestion
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2018-11-14) De Vrieze, Jo; Ijaz, Umer Z.; Saunders, Aaron M.; Theuerl, Susanne
    The microbial community in anaerobic digestion has been analysed through microbial fingerprinting techniques, such as terminal restriction fragment length polymorphism (TRFLP), for decades. In the last decade, high-throughput 16S rRNA gene amplicon sequencing has replaced these techniques, but the time-consuming and complex nature of high-throughput techniques is a potential bottleneck for full-scale anaerobic digestion application, when monitoring community dynamics. Here, the bacterial and archaeal TRFLP profiles were compared with 16S rRNA gene amplicon profiles (Illumina platform) of 25 full-scale anaerobic digestion plants. The α-diversity analysis revealed a higher richness based on Illumina data, compared with the TRFLP data. This coincided with a clear difference in community organisation, Pareto distribution, and co-occurrence network statistics, i.e., betweenness centrality and normalised degree. The β-diversity analysis showed a similar clustering profile for the Illumina, bacterial TRFLP and archaeal TRFLP data, based on different distance measures and independent of phylogenetic identification, with pH and temperature as the two key operational parameters determining microbial community composition. The combined knowledge of temporal dynamics and projected clustering in the β-diversity profile, based on the TRFLP data, distinctly showed that TRFLP is a reliable technique for swift microbial community dynamics screening in full-scale anaerobic digestion plants. © 2018, The Author(s).