Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Time-resolved study of site-specific corrosion in a single crystalline silver nanoparticle

2019, Trautmann, Steffen, Dathe, André, Csáki, Andrea, Thiele, Matthias, Müller, Robert, Fritzsche, Wolfgang, Stranik, Ondrej

We followed over 24 h a corrosion process in monocrystalline triangular-shaped nanoparticles at a single-particle level by atomic force microscopy and optical spectroscopy techniques under ambient laboratory conditions. The triangular-shaped form of the particles was selected, because the crystallographic orientation of the particles is well defined upon their deposition on a substrate. We observed that the particles already start to alter within this time frame. Surprisingly, the corrosion starts predominantly from the tips of the particles and it creates within few hours large protrusions, which strongly suppress the plasmon character of the particles. These observations support the crystallographic model of these particles consisting of a high-defect hexagonal closed packed layer, and they could help material scientists to design more stable silver nanoparticles. Moreover, this described technique can be used to reveal kinetics of the corrosion in the nanoscale of other materials.

Loading...
Thumbnail Image
Item

Wet-chemical Passivation of Anisotropic Plasmonic Nanoparticles for LSPR-sensing by a Silica Shell

2015, Thiele, Matthias, Götz, Isabell, Trautmann, Steffen, Müller, Robert, Csáki, Andrea, Henkel, Thomas, Fritzsche, Wolfgang

Metal nanoparticles showing the effect of localized surface plasmon resonance (LSPR), a collective oscillation of the conduction electrons upon interaction with light, represent an interesting tool for bioanalytics. This resonance is influenced by changes in the environment, and can be therefore used for the detection of molecular layers. The sensitivity, this means the extent of wavelength resonance shift per change in refractive index in the environment, represents an important performance parameter. It is higher for silver compared to gold particles, and is also increased for anisotropic particles. So silver triangles show a high potential for highly sensitive plasmonic nanoparticles. However, the stability under ambient conditions is rather poor. The paper demonstrates the passivation of silver triangles by silica coating using a wet-chemical approach. It compares the sensitivity for particles with and without passivation, and visualizes the passivation effect in a high resolution, single particle TEM study.