Search Results

Now showing 1 - 7 of 7
  • Item
    Experimental Observation of Dirac Nodal Links in Centrosymmetric Semimetal TiB2
    (College Park, MD : American Physical Society, 2018) Liu, Z.; Lou, R.; Guo, P.; Wang, Q.; Sun, S.; Li, C.; Thirupathaiah, S.; Fedorov, A.; Shen, D.; Liu, K.; Lei, H.; Wang, S.
    The topological nodal-line semimetal state, serving as a fertile ground for various topological quantum phases, where a topological insulator, Dirac semimetal, or Weyl semimetal can be realized when the certain protecting symmetry is broken, has only been experimentally studied in very few materials. In contrast to discrete nodes, nodal lines with rich topological configurations can lead to more unusual transport phenomena. Utilizing angle-resolved photoemission spectroscopy and first-principles calculations, here, we provide compelling evidence of nodal-line fermions in centrosymmetric semimetal TiB2 with a negligible spin-orbit coupling effect. With the band crossings just below the Fermi energy, two groups of Dirac nodal rings are clearly observed without any interference from other bands, one surrounding the Brillouin zone (BZ) corner in the horizontal mirror plane σh and the other surrounding the BZ center in the vertical mirror plane σv. The linear dispersions forming Dirac nodal rings are as wide as 2 eV. We further observe that the two groups of nodal rings link together along the Γ-K direction, composing a nodal-link configuration. The simple electronic structure with Dirac nodal links mainly constituting the Fermi surfaces suggests TiB2 as a remarkable platform for studying and applying the novel physical properties related to nodal-line fermions.
  • Item
    Possible experimental realization of a basic Z 2 topological semimetal in GaGeTe
    (College Park, MD : American Institute of Physics, 2019) Haubold, E.; Fedorov, A.; Pielnhofer, F.; Rusinov, I.P.; Menshchikova, T.V.; Duppel, V.; Friedrich, D.; Weihrich, R.; Pfitzner, A.; Zeugner, A.; Isaeva, A.; Thirupathaiah, S.; Kushnirenko, Y.; Rienks, E.; Kim, T.; Chulkov, E.V.; Büchner, B.; Borisenko, S.
    We report experimental and theoretical evidence that GaGeTe is a basic Z2 topological semimetal with three types of charge carriers: bulk-originated electrons and holes as well as surface state electrons. This electronic situation is qualitatively similar to the classic 3D topological insulator Bi2Se3, but important differences account for an unprecedented transport scenario in GaGeTe. High-resolution angle-resolved photoemission spectroscopy combined with advanced band structure calculations show a small indirect energy gap caused by a peculiar band inversion at the T-point of the Brillouin zone in GaGeTe. An energy overlap of the valence and conduction bands brings both electron and holelike carriers to the Fermi level, while the momentum gap between the corresponding dispersions remains finite. We argue that peculiarities of the electronic spectrum of GaGeTe have a fundamental importance for the physics of topological matter and may boost the material's application potential.
  • Item
    Doping dependence and electron–boson coupling in the ultrafast relaxation of hot electron populations in Ba(Fe1–x Co x )2As2
    (Milton Park : Taylor & Francis, 2016) Avigo, I.; Thirupathaiah, S.; Ligges, M.; Wolf, T.; Fink, J.; Bovensiepen, U.
    Using femtosecond time- and angle-resolved photoemission spectroscopy we investigate the effect of electron doping on the electron dynamics in $\mathrm{Ba}{({\mathrm{Fe}}_{1-x}{\mathrm{Co}}_{x})}_{2}{\mathrm{As}}_{2}$ in a range of $0\leqslant x\lt 0.15$ at temperatures slightly above the Néel temperature. By analyzing the time-dependent photoemission intensity of the pump laser excited population as a function of energy, we found that the relaxation times at $0\lt E-{E}_{{\rm{F}}}\lt 0.2\,\mathrm{eV}$ are doping dependent and about 100 fs shorter at optimal doping than for overdoped and parent compounds. Analysis of the relaxation rates also reveals the presence of a pump fluence dependent step in the relaxation time at $E-{E}_{{\rm{F}}}=200\,\mathrm{meV}$ which we explain by coupling of the excited electronic system to a boson of this energy. We compare our results with static ARPES and transport measurements and find disagreement and agreement concerning the doping-dependence, respectively. We discuss the effect of the electron–boson coupling on the energy-dependent relaxation and assign the origin of the boson to a magnetic excitation.
  • Item
    Formation of heavy d-electron quasiparticles in Sr3Ru2O7
    (Milton Park : Taylor & Francis, 2013) Allan, M.P.; Tamai, A.; Rozbicki, E.; Fischer, M.H.; Voss, J.; King, P.D.C.; Meevasana, W.; Thirupathaiah, S.; Rienks, E.; Fink, J.; Tennant, D.A .; Perry, R.S.; Mercure, J.F.; Wang, M.A.; Lee, Jinho; Fennie, C.J.; Kim, E.A.; Lawler, M.J.; Shen, K.M.; Mackenzie, A.P.; Shen, Z.X.; Baumberger, F.
    The phase diagram of Sr3Ru2O7 shows hallmarks of strong electron correlations despite the modest Coulomb interaction in the Ru 4d shell. We use angle-resolved photoelectron spectroscopy measurements to provide microscopic insight into the formation of the strongly renormalized heavy d-electron liquid that controls the physics of Sr3Ru2O7. Our data reveal itinerant Ru 4d-states confined over large parts of the Brillouin zone to an energy range of <6 meV, nearly three orders of magnitude lower than the bare band width. We show that this energy scale agrees quantitatively with a characteristic thermodynamic energy scale associated with quantum criticality and illustrate how it arises from a combination of back-folding due to a structural distortion and the hybridization of light and strongly renormalized, heavy quasiparticle bands. The resulting heavy Fermi liquid has a marked k-dependence of the renormalization which we relate to orbital mixing along individual Fermi surface sheets.
  • Item
    Isotropic multi-gap superconductivity in BaFe1.9Pt0.1As2 from thermal transport and spectroscopic measurements
    (Bristol : IOP Publishing, 2014) Ziemak, Steven; Kirshenbaum, K.; Saha, S.R.; Hu, R.; Reid, J.-Ph.; Gordon, R.; Taillefer, L.; Evtushinsky, D.; Thirupathaiah, S.; Büchner, B.; Borisenko, S.V.; Ignatov, A.; Kolchmeyer, D.; Blumberg, G.; Paglione, J.
    Thermal conductivity, point contact spectroscopy, angle-resolved photoemission and Raman spectroscopy measurements were performed on BaFe1.9Pt0.1As2 single crystals obtained from the same synthesis batch in order to investigate the superconducting energy gap structure using multiple techniques. Low temperature thermal conductivity was measured in the superconducting state as a function of temperature and magnetic field, revealing an absence of quasiparticle excitations in the $T\to 0$ limit up to 15 T applied magnetic fields. Point-contact Andreev reflection spectroscopy measurements were performed as a function of temperature using the needle-anvil technique, yielding features in the conductance spectra at both 2.5 meV and 7.0 meV scales consistent with a multi-gap scenario. Angle-resolved photoemission spectroscopy probed the electronic band structure above and below the superconducting transition temperature of Tc = 23 K, revealing an isotropic gap of magnitude $\sim 3$ meV on both electron and hole pockets. Finally, Raman spectroscopy was used to probe quasiparticle excitations in multiple channels, showing a threshold energy scale of 3 meV below Tc. Overall, we find strong evidence for an isotropic gap structure with no nodes or deep minima in this system, with a 3 meV magnitude gap consistently observed and a second, larger gap suggested by point-contact spectroscopy measurements. We discuss the implications that the combination of these results reveal about the superconducting order parameter in the BaFe2−xPtxAs2 doping system and how this relates to similar substituted iron pnictides.
  • Item
    Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor
    (London : Nature Publishing Group, 2015) Charnukha, A.; Thirupathaiah, S.; Zabolotnyy, V.B.; Büchner, B.; Zhigadlo, N.D.; Batlogg, B.; Yaresko, A.N.; Borisenko, S.V.
    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe0.92Co0.08AsO , is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.
  • Item
    Weak-coupling superconductivity in a strongly correlated iron pnictide
    (London : Nature Publishing Group, 2016) Charnukha, A.; Post, K.W.; Thirupathaiah, S.; Pröpper, D.; Wurmehl, S.; Roslova, M.; Morozov, I.; Büchner, B.; Yaresko, A.N.
    Iron-based superconductors have been found to exhibit an intimate interplay of orbital, spin, and lattice degrees of freedom, dramatically affecting their low-energy electronic properties, including superconductivity. Albeit the precise pairing mechanism remains unidentified, several candidate interactions have been suggested to mediate the superconducting pairing, both in the orbital and in the spin channel. Here, we employ optical spectroscopy (OS), angle-resolved photoemission spectroscopy (ARPES), ab initio band-structure, and Eliashberg calculations to show that nearly optimally doped NaFe0.978Co0.022As exhibits some of the strongest orbitally selective electronic correlations in the family of iron pnictides. Unexpectedly, we find that the mass enhancement of itinerant charge carriers in the strongly correlated band is dramatically reduced near the Γ point and attribute this effect to orbital mixing induced by pronounced spin-orbit coupling. Embracing the true band structure allows us to describe all low-energy electronic properties obtained in our experiments with remarkable consistency and demonstrate that superconductivity in this material is rather weak and mediated by spin fluctuations.