Search Results

Now showing 1 - 2 of 2
  • Item
    Temperature gradient-induced magnetization reversal of single ferromagnetic nanowires
    (Bristol : IOP Publ., 2017-11-17) Michel, Ann-Kathrin; Niemann, Anna Corinna; Boehnert, Tim; Martens, Stephan; Moreno, Josep M. Montero; Goerlitz, Detlef; Zierold, Robert; Reith, Heiko; Vega, Victor; Prida, Victor M.; Thomas, Andy; Gooth, Johannes; Nielsch, Kornelius
    In this study, we investigate the temperature- and temperature gradient-dependent magnetization reversal process of individual, single-domain Co39Ni61 and Fe15Ni85 ferromagnetic nanowires via the magneto-optical Kerr effect and magnetoresistance measurements. While the coercive fields (HC) and therefore the magnetic switching fields (HSW) generally decrease under isothermal conditions at elevated base temperatures (Tbase), temperature gradients (ΔT) along the nanowires lead to an increased switching field of up to 15% for ΔT  = 300 K in Co39Ni61 nanowires. This enhancement is attributed to a stress-induced, magneto-elastic anisotropy term due to an applied temperature gradient along the nanowire that counteracts the thermally assisted magnetization reversal process. Our results demonstrate that a careful distinction between locally elevated temperatures and temperature gradients has to be made in future heat-assisted magnetic recording devices.
  • Item
    Magneto-thermal transport indicating enhanced Nernst response in FeCo/IrMn exchange coupled stacks
    (Melville, NY : American Inst. of Physics, 2022) Martini, Mickey; Reichlova, Helena; Lee, Yejin; Dusíková, Dominika; Zemen, Jan; Nielsch, Kornelius; Thomas, Andy
    We present an analysis of magneto-thermal transport data in IrMn/FeCo bilayers based on the Mott relation and report an enhancement of the Nernst response in the vicinity of the blocking temperature. We measure all four transport coefficients of the longitudinal resistivity, anomalous Hall resistivity, Seebeck effect, and anomalous Nernst effect, and we show a deviation arising around the blocking temperature between the measured Nernst coefficient and the one calculated using the Mott rule. We attribute this discrepancy to spin fluctuations at the antiferromagnet/ferromagnet interface near the blocking temperature. The latter is estimated by magnetometry and magneto-transport measurements.