Search Results

Now showing 1 - 2 of 2
  • Item
    From damage to delamination in nonlinearly elastic materials at small strains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Mielke, Alexander; Roubíček, Thomáš; Thomas, Marita
    Brittle Griffith-type delamination of compounds is deduced by means of Gamma-convergence from partial, isotropic damage of three-specimen-sandwich-structures by flattening the middle component to the thickness 0. The models used here allow for nonlinearly elastic materials at small strains and consider the processes to be unidirectional and rate-independent. The limit passage is performed via a double limit: first, we gain a delamination model involving the gradient of the delamination variable, which is essential to overcome the lack of a uniform coercivity arising from the passage from partial damage to delamination. Second, the delamination-gradient is supressed. Noninterpenetration- and transmission-conditions along the interface are obtained
  • Item
    A rate-independent gradient system in damage coupled with plasticity via structured strains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Bonetti, Elena; Rocca, Elisabetta; Rossi, Riccarda; Thomas, Marita
    This contribution deals with a class of models combining isotropic damage with plasticity. It has been inspired by a work by Freddi and Royer-Carfagni [FRC10], including the case where the inelastic part of the strain only evolves in regions where the material is damaged. The evolution both of the damage and of the plastic variable is assumed to be rate-independent. Existence of solutions is established in the abstract energetic framework elaborated by Mielke and coworkers (cf., e.g., [Mie05, Mie11b]).