Search Results

Now showing 1 - 5 of 5
  • Item
    Coincidences of climate extremes and anomalous vegetation responses: Comparing tree ring patterns to simulated productivity
    (München : European Geopyhsical Union, 2015) Rammig, A.; Wiedermann, M.; Donges, J.F.; Babst, F.; von Bloh, W.; Frank, D.; Thonicke, K.; Mahecha, M.D.
    Climate extremes can trigger exceptional responses in terrestrial ecosystems, for instance by altering growth or mortality rates. Such effects are often manifested in reductions in net primary productivity (NPP). Investigating a Europe-wide network of annual radial tree growth records confirms this pattern: we find that 28% of tree ring width (TRW) indices are below two standard deviations in years in which extremely low precipitation, high temperatures or the combination of both noticeably affect tree growth. Based on these findings, we investigate possibilities for detecting climate-driven patterns in long-term TRW data to evaluate state-of-the-art dynamic vegetation models such as the Lund-Potsdam-Jena dynamic global vegetation model for managed land (LPJmL). The major problem in this context is that LPJmL simulates NPP but not explicitly the radial tree growth, and we need to develop a generic method to allow for a comparison between simulated and observed response patterns. We propose an analysis scheme that quantifies the coincidence rate of climate extremes with some biotic responses (here TRW or simulated NPP). We find a relative reduction of 34% in simulated NPP during precipitation, temperature and combined extremes. This reduction is comparable to the TRW response patterns, but the model responds much more sensitively to drought stress. We identify 10 extreme years during the 20th century during which both model and measurements indicate high coincidence rates across Europe. However, we detect substantial regional differences in simulated and observed responses to climatic extreme events. One explanation for this discrepancy could be the tendency of tree ring data to originate from climatically stressed sites. The difference between model and observed data is amplified by the fact that dynamic vegetation models are designed to simulate mean ecosystem responses on landscape or regional scales. We find that both simulation results and measurements display carry-over effects from climate anomalies during the previous year. We conclude that radial tree growth chronologies provide a suitable basis for generic model benchmarks. The broad application of coincidence analysis in generic model benchmarks along with an increased availability of representative long-term measurements and improved process-based models will refine projections of the long-term carbon balance in terrestrial ecosystems.
  • Item
    Identifying environmental controls on vegetation greenness phenology through model-data integration
    (München : European Geopyhsical Union, 2014) Forkel, M.; Carvalhais, N.; Schaphoff, S.; v. Bloh, W.; Migliavacca, M.; Thurner, M.; Thonicke, K.
    Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing phenology and decadal dynamics of vegetation greenness as observed by satellites. These limitations in reproducing observations reflect a poor understanding and description of the environmental controls on phenology, which strongly influence the ability to simulate longer-term vegetation dynamics, e.g. carbon allocation. Combining DGVMs with observational data sets can potentially help to revise current modelling approaches and thus enhance the understanding of processes that control seasonal to long-term vegetation greenness dynamics. Here we implemented a new phenology model within the LPJmL (Lund Potsdam Jena managed lands) DGVM and integrated several observational data sets to improve the ability of the model in reproducing satellite-derived time series of vegetation greenness. Specifically, we optimized LPJmL parameters against observational time series of the fraction of absorbed photosynthetic active radiation (FAPAR), albedo and gross primary production to identify the main environmental controls for seasonal vegetation greenness dynamics. We demonstrated that LPJmL with new phenology and optimized parameters better reproduces seasonality, inter-annual variability and trends of vegetation greenness. Our results indicate that soil water availability is an important control on vegetation phenology not only in water-limited biomes but also in boreal forests and the Arctic tundra. Whereas water availability controls phenology in water-limited ecosystems during the entire growing season, water availability co-modulates jointly with temperature the beginning of the growing season in boreal and Arctic regions. Additionally, water availability contributes to better explain decadal greening trends in the Sahel and browning trends in boreal forests. These results emphasize the importance of considering water availability in a new generation of phenology modules in DGVMs in order to correctly reproduce observed seasonal-to-decadal dynamics of vegetation greenness.
  • Item
    Estimating carbon emissions from African wildfires
    (München : European Geopyhsical Union, 2009) Lehsten, V.; Tansey, K.; Balzter, H.; Thonicke, K.; Spessa, A.; Weber, U.; Smith, B.; Arneth, A.
    We developed a technique for studying seasonal and interannual variation in pyrogenic carbon emissions from Africa using a modelling approach that scales burned area estimates from L3JRC, a map recently generated from remote sensing of burn scars instead of active fires. Carbon fluxes were calculated by the novel fire model SPITFIRE embedded within the dynamic vegetation model framework LPJ-GUESS, using daily climate input. For the time period from 2001 to 2005 an average area of 195.5±24×104 km2 was burned annually, releasing an average of 723±70 Tg C to the atmosphere; these estimates for the biomass burned are within the range of previously published estimates. Despite the fact that the majority of wildfires are ignited by humans, strong relationships between climatic conditions (particularly precipitation), net primary productivity and overall biomass burnt emerged. Our investigation of the relationships between burnt area and carbon emissions and their potential drivers available litter and precipitation revealed uni-modal responses to annual precipitation, with a maximum around 1000 mm for burned area and emissions, or 1200 mm for litter availability. Similar response patterns identified in savannahs worldwide point to precipitation as a chief determinant for short-term variation in fire regime. A considerable variability that cannot be explained by fire-precipitation relationships alone indicates the existence of additional factors that must be taken into account.
  • Item
    LPJmL4 - A dynamic global vegetation model with managed land - Part 2: Model evaluation
    (Göttingen : Copernicus GmbH, 2018) Schaphoff, S.; Forkel, M.; Müller, C.; Knauer, J.; Von, Bloh, W.; Gerten, D.; Jägermeyr, J.; Lucht, W.; Rammig, A.; Thonicke, K.; Waha, K.
    The dynamic global vegetation model LPJmL4 is a process-based model that simulates climate and land use change impacts on the terrestrial biosphere, agricultural production, and the water and carbon cycle. Different versions of the model have been developed and applied to evaluate the role of natural and managed ecosystems in the Earth system and the potential impacts of global environmental change. A comprehensive model description of the new model version, LPJmL4, is provided in a companion paper (Schaphoff et al., 2018c). Here, we provide a full picture of the model performance, going beyond standard benchmark procedures and give hints on the strengths and shortcomings of the model to identify the need for further model improvement. Specifically, we evaluate LPJmL4 against various datasets from in situ measurement sites, satellite observations, and agricultural yield statistics. We apply a range of metrics to evaluate the quality of the model to simulate stocks and flows of carbon and water in natural and managed ecosystems at different temporal and spatial scales. We show that an advanced phenology scheme improves the simulation of seasonal fluctuations in the atmospheric CO2 concentration, while the permafrost scheme improves estimates of carbon stocks. The full LPJmL4 code including the new developments will be supplied open source through . We hope that this will lead to new model developments and applications that improve the model performance and possibly build up a new understanding of the terrestrial biosphere.
  • Item
    LPJmL4 - A dynamic global vegetation model with managed land - Part 1: Model description
    (Göttingen : Copernicus GmbH, 2018) Schaphoff, S.; Von Bloh, W.; Rammig, A.; Thonicke, K.; Biemans, H.; Forkel, M.; Gerten, D.; Heinke, J.; Jägermeyr, J.; Knauer, J.; Langerwisch, F.; Lucht, W.; Müller, C.; Rolinski, S.; Waha, K.
    This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates - internally consistently - the growth and productivity of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes. These features render LPJmL4 suitable for assessing a broad range of feedbacks within and impacts upon the terrestrial biosphere as increasingly shaped by human activities such as climate change and land use change. Here we describe the core model structure, including recently developed modules now unified in LPJmL4. Thereby, we also review LPJmL model developments and evaluations in the field of permafrost, human and ecological water demand, and improved representation of crop types. We summarize and discuss LPJmL model applications dealing with the impacts of historical and future environmental change on the terrestrial biosphere at regional and global scale and provide a comprehensive overview of LPJmL publications since the first model description in 2007. To demonstrate the main features of the LPJmL4 model, we display reference simulation results for key processes such as the current global distribution of natural and managed ecosystems, their productivities, and associated water fluxes. A thorough evaluation of the model is provided in a companion paper. By making the model source code freely available at https://gitlab.pik-potsdam.de/lpjml/LPJmL we hope to stimulate the application and further development of LPJmL4 across scientific communities in support of major activities such as the IPCC and SDG process.