Search Results

Now showing 1 - 2 of 2
  • Item
    Impact of droughts on the carbon cycle in European vegetation: A probabilistic risk analysis using six vegetation models
    (München : European Geopyhsical Union, 2014) Van Oijen, M.; Balkovi, J.; Beer, C.; Cameron, D.R.; Ciais, P.; Cramer, W.; Kato, T.; Kuhnert, M.; Martin, R.; Myneni, R.; Rammig, A.; Rolinski, S.; Soussana, J.-F.; Thonicke, K.; Van der Velde, M.; Xu, L.
    We analyse how climate change may alter risks posed by droughts to carbon fluxes in European ecosystems. The approach follows a recently proposed framework for risk analysis based on probability theory. In this approach, risk is quantified as the product of hazard probability and ecosystem vulnerability. The probability of a drought hazard is calculated here from the Standardized Precipitation–Evapotranspiration Index (SPEI). Vulnerability is calculated from the response to drought simulated by process-based vegetation models. We use six different models: three for generic vegetation (JSBACH, LPJmL, ORCHIDEE) and three for specific ecosystems (Scots pine forests: BASFOR; winter wheat fields: EPIC; grasslands: PASIM). The periods 1971–2000 and 2071–2100 are compared. Climate data are based on gridded observations and on output from the regional climate model REMO using the SRES A1B scenario. The risk analysis is carried out for ~ 18 000 grid cells of 0.25 × 0.25° across Europe. For each grid cell, drought vulnerability and risk are quantified for five seasonal variables: net primary and ecosystem productivity (NPP, NEP), heterotrophic respiration (Rh), soil water content and evapotranspiration. In this analysis, climate change leads to increased drought risks for net primary productivity in the Mediterranean area: five of the models estimate that risk will exceed 15%. The risks increase mainly because of greater drought probability; ecosystem vulnerability will increase to a lesser extent. Because NPP will be affected more than Rh, future carbon sequestration (NEP) will also be at risk predominantly in southern Europe, with risks exceeding 0.25 g C m−2 d−1 according to most models, amounting to reductions in carbon sequestration of 20 to 80%.
  • Item
    Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6
    (Göttingen : Copernicus GmbH, 2018) Rolinski, S.; Müller, C.; Heinke, J.; Weindl, I.; Biewald, A.; Leon Bodirsky, B.; Bondeau, A.; Boons-Prins, E.R.; Bouwman, A.F.; Leffelaar, P.A.; Roller, J.A.T.; Schaphoff, S.; Thonicke, K.
    Grassland management affects the carbon fluxes of one-third of the global land area and is thus an important factor for the global carbon budget. Nonetheless, this aspect has been largely neglected or underrepresented in global carbon cycle models. We investigate four harvesting schemes for the managed grassland implementation of the dynamic global vegetation model (DGVM) Lund-Potsdam-Jena managed Land (LPJmL) that facilitate a better representation of actual management systems globally. We describe the model implementation and analyze simulation results with respect to harvest, net primary productivity and soil carbon content and by evaluating them against reported grass yields in Europe.We demonstrate the importance of accounting for differences in grassland management by assessing potential livestock grazing densities as well as the impacts of grazing, grazing intensities and mowing systems on soil carbon stocks. Grazing leads to soil carbon losses in polar or arid regions even at moderate livestock densities ( <0.4 livestock units per hectare-LSUha-1) but not in temperate regions even at much higher densities (0.4 to 1.2 LSUha-1). Applying LPJmL with the new grassland management options enables assessments of the global grassland production and its impact on the terrestrial biogeochemical cycles but requires a global data set on current grassland management.