Search Results

Now showing 1 - 2 of 2
  • Item
    Performance evaluation of global hydrological models in six large Pan-Arctic watersheds
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Gädeke, Anne; Krysanova, Valentina; Aryal, Aashutosh; Chang, Jinfeng; Grillakis, Manolis; Hanasaki, Naota; Koutroulis, Aristeidis; Pokhrel, Yadu; Satoh, Yusuke; Schaphoff, Sibyll; Müller Schmied, Hannes; Stacke, Tobias; Tang, Qiuhong; Wada, Yoshihide; Thonicke, Kirsten
    Global Water Models (GWMs), which include Global Hydrological, Land Surface, and Dynamic Global Vegetation Models, present valuable tools for quantifying climate change impacts on hydrological processes in the data scarce high latitudes. Here we performed a systematic model performance evaluation in six major Pan-Arctic watersheds for different hydrological indicators (monthly and seasonal discharge, extremes, trends (or lack of), and snow water equivalent (SWE)) via a novel Aggregated Performance Index (API) that is based on commonly used statistical evaluation metrics. The machine learning Boruta feature selection algorithm was used to evaluate the explanatory power of the API attributes. Our results show that the majority of the nine GWMs included in the study exhibit considerable difficulties in realistically representing Pan-Arctic hydrological processes. Average APIdischarge (monthly and seasonal discharge) over nine GWMs is > 50% only in the Kolyma basin (55%), as low as 30% in the Yukon basin and averaged over all watersheds APIdischarge is 43%. WATERGAP2 and MATSIRO present the highest (APIdischarge > 55%) while ORCHIDEE and JULES-W1 the lowest (APIdischarge ≤ 25%) performing GWMs over all watersheds. For the high and low flows, average APIextreme is 35% and 26%, respectively, and over six GWMs APISWE is 57%. The Boruta algorithm suggests that using different observation-based climate data sets does not influence the total score of the APIs in all watersheds. Ultimately, only satisfactory to good performing GWMs that effectively represent cold-region hydrological processes (including snow-related processes, permafrost) should be included in multi-model climate change impact assessments in Pan-Arctic watersheds. © 2020, The Author(s).
  • Item
    Understanding the uncertainty in global forest carbon turnover
    (Katlenburg-Lindau [u.a.] : Copernicus, 2020) Pugh, Thomas A.M.; Rademacher, Tim; Shafer, Sarah L.; Steinkamp, Jörg; Barichivich, Jonathan; Beckage, Brian; Haverd, Vanessa; Harper, Anna; Heinke, Jens; Nishina, Kazuya; Rammig, Anja; Sato, Hisashi; Arneth, Almut; Hantson, Stijn; Hickler, Thomas; Kautz, Markus; Quesada, Benjamin; Smith, Benjamin; Thonicke, Kirsten
    The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models used for global assessments tend to fall back on simplified assumptions of the turnover rates of biomass and soil carbon pools. In this study, the biomass carbon turnover times calculated by an ensemble of contemporary terrestrial biosphere models (TBMs) are analysed to assess their current capability to accurately estimate biomass carbon turnover times in forests and how these times are anticipated to change in the future. Modelled baseline 1985-2014 global average forest biomass turnover times vary from 12.2 to 23.5 years between TBMs. TBM differences in phenological processes, which control allocation to, and turnover rate of, leaves and fine roots, are as important as tree mortality with regard to explaining the variation in total turnover among TBMs. The different governing mechanisms exhibited by each TBM result in a wide range of plausible turnover time projections for the end of the century. Based on these simulations, it is not possible to draw robust conclusions regarding likely future changes in turnover time, and thus biomass change, for different regions. Both spatial and temporal uncertainty in turnover time are strongly linked to model assumptions concerning plant functional type distributions and their controls. Thirteen model-based hypotheses of controls on turnover time are identified, along with recommendations for pragmatic steps to test them using existing and novel observations. Efforts to resolve uncertainty in turnover time, and thus its impacts on the future evolution of biomass carbon stocks across the world's forests, will need to address both mortality and establishment components of forest demography, as well as allocation of carbon to woody versus non-woody biomass growth. © 2020 SPIE. All rights reserved.