Search Results

Now showing 1 - 4 of 4
  • Item
    Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests
    (Katlenburg-Lindau : European Geosciences Union, 2021) Sakschewski, Boris; Bloh, Werner von; Drüke, Markus; Sörensson, Anna Amelia; Ruscica, Romina; Langerwisch, Fanny; Billing, Maik; Bereswill, Sarah; Hirota, Marina; Oliveira, Rafael Silva; Heinke, Jens; Thonicke, Kirsten
    A variety of modelling studies have suggested tree rooting depth as a key variable to explain evapotranspiration rates, productivity and the geographical distribution of evergreen forests in tropical South America. However, none of those studies have acknowledged resource investment, timing and physical constraints of tree rooting depth within a competitive environment, undermining the ecological realism of their results. Here, we present an approach of implementing variable rooting strategies and dynamic root growth into the LPJmL4.0 (Lund-Potsdam-Jena managed Land) dynamic global vegetation model (DGVM) and apply it to tropical and sub-tropical South America under contemporary climate conditions. We show how competing rooting strategies which underlie the trade-off between above- and below-ground carbon investment lead to more realistic simulation of intra-annual productivity and evapotranspiration and consequently of forest cover and spatial biomass distribution. We find that climate and soil depth determine a spatially heterogeneous pattern of mean rooting depth and below-ground biomass across the study region. Our findings support the hypothesis that the ability of evergreen trees to adjust their rooting systems to seasonally dry climates is crucial to explaining the current dominance, productivity and evapotranspiration of evergreen forests in tropical South America.
  • Item
    Understanding the uncertainty in global forest carbon turnover
    (Katlenburg-Lindau [u.a.] : Copernicus, 2020) Pugh, Thomas A.M.; Rademacher, Tim; Shafer, Sarah L.; Steinkamp, Jörg; Barichivich, Jonathan; Beckage, Brian; Haverd, Vanessa; Harper, Anna; Heinke, Jens; Nishina, Kazuya; Rammig, Anja; Sato, Hisashi; Arneth, Almut; Hantson, Stijn; Hickler, Thomas; Kautz, Markus; Quesada, Benjamin; Smith, Benjamin; Thonicke, Kirsten
    The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models used for global assessments tend to fall back on simplified assumptions of the turnover rates of biomass and soil carbon pools. In this study, the biomass carbon turnover times calculated by an ensemble of contemporary terrestrial biosphere models (TBMs) are analysed to assess their current capability to accurately estimate biomass carbon turnover times in forests and how these times are anticipated to change in the future. Modelled baseline 1985-2014 global average forest biomass turnover times vary from 12.2 to 23.5 years between TBMs. TBM differences in phenological processes, which control allocation to, and turnover rate of, leaves and fine roots, are as important as tree mortality with regard to explaining the variation in total turnover among TBMs. The different governing mechanisms exhibited by each TBM result in a wide range of plausible turnover time projections for the end of the century. Based on these simulations, it is not possible to draw robust conclusions regarding likely future changes in turnover time, and thus biomass change, for different regions. Both spatial and temporal uncertainty in turnover time are strongly linked to model assumptions concerning plant functional type distributions and their controls. Thirteen model-based hypotheses of controls on turnover time are identified, along with recommendations for pragmatic steps to test them using existing and novel observations. Efforts to resolve uncertainty in turnover time, and thus its impacts on the future evolution of biomass carbon stocks across the world's forests, will need to address both mortality and establishment components of forest demography, as well as allocation of carbon to woody versus non-woody biomass growth. © 2020 SPIE. All rights reserved.
  • Item
    Simulating functional diversity of European natural forests along climatic gradients
    (Oxford [u.a.] : Wiley-Blackwell, 2020) Thonicke, Kirsten; Billing, Maik; von Bloh, Werner; Sakschewski, Boris; Niinemets, Ülo; Peñuelas, Josep; Cornelissen, J. Hans C.; Onoda, Yusuke; van Bodegom, Peter; Schaepman, Michael E.; Schneider, Fabian D.; Walz, Ariane
    Aim: We analyse how functional diversity (FD) varies across European natural forests to understand the effects of environmental and competitive filtering on plant trait distribution. Location: Forest ecosystems in Europe from 11°W to 36°E and 29.5°N to 62°N. Taxon: Pinaceae, Fagaceae and Betulaceae, Oleaceae, Tiliaceae, Aceraceae, Leguminosae (unspecific). Methods: We adopted the existing Dynamic Global Vegetation Model Lund-Potsdam-Jena managed Land of flexible individual traits (LPJmL-FIT) for Europe by eliminating both bioclimatic limits of plant functional types (PFTs) and replacing prescribed values of functional traits for PFTs with emergent values under influence of environmental filtering and competition. We quantified functional richness (FR), functional divergence (FDv) and functional evenness (FE) in representative selected sites and at Pan-European scale resulting from simulated functional and structural trait combinations of individual trees. While FR quantifies the amount of occupied trait space, FDv and FE describe the distribution and abundance of trait combinations, respectively, in a multidimensional trait space. Results: Lund-Potsdam-Jena managed Land of flexible individual traits reproduces spatial PFTs and local trait distributions and agrees well with observed productivity, biomass and tree height of European natural forests. The observed site-specific trait distributions and spatial gradients of traits of the leaf- and stem-resource economics spectra coincide with environmental filtering and the competition for light and water in environments with strong abiotic stress. Where deciduous and needle-leaved trees co-occur, for example, in boreal and mountainous forests, the potential niche space is wide (high FR), and extreme ends in the niche space are occupied (high FDv). We find high FDv in Mediterranean forests where drought increasingly limits tree growth, thus niche differentiation becomes more important. FDv decreases in temperate forests where a cold climate increasingly limits growth efficiency of broad-leaved summer green trees, thus reducing the importance of competitive exclusion. Highest FE was simulated in wet Atlantic and southern Europe which indicated relatively even niche occupation and thus high resource-use efficiency. Main Conclusions: We find FD resulting from both environmental and competitive filtering. Pan-European FR, FDv and FE demonstrate the influence of climate gradients and intra- and inter-PFT competition. The indices underline a generally high FD of natural forests in Europe. Co-existence of functionally diverse trees across PFTs emerges from alternative (life-history) strategies, disturbance and tree demography. © 2020 John Wiley & Sons Ltd
  • Item
    Tackling unresolved questions in forest ecology: The past and future role of simulation models
    ([S.l.] : John Wiley & Sons, Inc., 2021) Maréchaux, Isabelle; Langerwisch, Fanny; Huth, Andreas; Bugmann, Harald; Morin, Xavier; Reyer, Christopher P.O.; Seidl, Rupert; Collalti, Alessio; Dantas de Paula, Mateus; Fischer, Rico; Gutsch, Martin; Lexer, Manfred J.; Lischke, Heike; Rammig, Anja; Rödig, Edna; Sakschewski, Boris; Taubert, Franziska; Thonicke, Kirsten; Vacchiano, Giorgio; Bohn, Friedrich J.
    Understanding the processes that shape forest functioning, structure, and diversity remains challenging, although data on forest systems are being collected at a rapid pace and across scales. Forest models have a long history in bridging data with ecological knowledge and can simulate forest dynamics over spatio-temporal scales unreachable by most empirical investigations.We describe the development that different forest modelling communities have followed to underpin the leverage that simulation models offer for advancing our understanding of forest ecosystems.Using three widely applied but contrasting approaches - species distribution models, individual-based forest models, and dynamic global vegetation models - as examples, we show how scientific and technical advances have led models to transgress their initial objectives and limitations. We provide an overview of recent model applications on current important ecological topics and pinpoint ten key questions that could, and should, be tackled with forest models in the next decade.Synthesis. This overview shows that forest models, due to their complementarity and mutual enrichment, represent an invaluable toolkit to address a wide range of fundamental and applied ecological questions, hence fostering a deeper understanding of forest dynamics in the context of global change.