Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Graphene transfer methods: A review

2021, Ullah, Sami, Yang, Xiaoqin, Ta, Huy Q., Hasan, Maria, Bachmatiuk, Alicja, Tokarska, Klaudia, Trzebicka, Barbara, Fu, Lei, Rummeli, Mark H.

Graphene is a material with unique properties that can be exploited in electronics, catalysis, energy, and bio-related fields. Although, for maximal utilization of this material, high-quality graphene is required at both the growth process and after transfer of the graphene film to the application-compatible substrate. Chemical vapor deposition (CVD) is an important method for growing high-quality graphene on non-technological substrates (as, metal substrates, e.g., copper foil). Thus, there are also considerable efforts toward the efficient and non-damaging transfer of quality of graphene on to technologically relevant materials and systems. In this review article, a range of graphene current transfer techniques are reviewed from the standpoint of their impact on contamination control and structural integrity preservation of the as-produced graphene. In addition, their scalability, cost- and time-effectiveness are discussed. We summarize with a perspective on the transfer challenges, alternative options and future developments toward graphene technology.

Loading...
Thumbnail Image
Item

Facile production of ultra-fine silicon nanoparticles

2020, Tokarska, Klaudia, Shi, Qitao, Otulakowski, Lukasz, Wrobel, Pawel, Ta, Huy Quang, Kurtyka, Przemyslaw, Kordyka, Aleksandra, Siwy, Mariola, Vasylieva, Margaryta, Forys, Aleksander, Trzebick, Barbara, Bachmatiuk, Alicja, Rümmeli, Mark H.

A facile procedure for the synthesis of ultra-fine silicon nanoparticles without the need for a Schlenk vacuum line is presented. The process consists of the production of a (HSiO1.5)n sol–gel precursor based on the polycondensation of low-cost trichlorosilane (HSiCl3), followed by its annealing and etching. The obtained materials were thoroughly characterized after each preparation step by electron microscopy, Fourier transform and Raman spectroscopy, X-ray dispersion spectroscopy, diffraction methods and photoluminescence spectroscopy. The data confirm the formation of ultra-fine silicon nanoparticles with controllable average diameters between 1 and 5 nm depending on the etching time.