Search Results

Now showing 1 - 3 of 3
  • Item
    FLIM data analysis based on Laguerre polynomial decomposition and machine-learning
    (Bellingham, Wash. : SPIE, 2021) Guo, Shuxia; Silge, Anja; Bae, Hyeonsoo; Tolstik, Tatiana; Meyer, Tobias; Matziolis, Georg; Schmitt, Michael; Popp, Jürgen; Bocklitz, Thomas
    Significance: The potential of fluorescence lifetime imaging microscopy (FLIM) is recently being recognized, especially in biological studies. However, FLIM does not directly measure the lifetimes, rather it records the fluorescence decay traces. The lifetimes and/or abundances have to be estimated from these traces during the phase of data processing. To precisely estimate these parameters is challenging and requires a well-designed computer program. Conventionally employed methods, which are based on curve fitting, are computationally expensive and limited in performance especially for highly noisy FLIM data. The graphical analysis, while free of fit, requires calibration samples for a quantitative analysis. Aim: We propose to extract the lifetimes and abundances directly from the decay traces through machine learning (ML). Approach: The ML-based approach was verified with simulated testing data in which the lifetimes and abundances were known exactly. Thereafter, we compared its performance with the commercial software SPCImage based on datasets measured from biological samples on a time-correlated single photon counting system. We reconstructed the decay traces using the lifetime and abundance values estimated by ML and SPCImage methods and utilized the root-mean-squared-error (RMSE) as marker. Results: The RMSE, which represents the difference between the reconstructed and measured decay traces, was observed to be lower for ML than for SPCImage. In addition, we could demonstrate with a three-component analysis the high potential and flexibility of the ML method to deal with more than two lifetime components.
  • Item
    Surface-enhanced Raman spectroscopy of cell lysates mixed with silver nanoparticles for tumor classification
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017) Hassoun, Mohamed; Schie, Iwan W.; Tolstik, Tatiana; Stanca, Sarmiza E.; Krafft, Christoph; Popp, Jürgen
    The throughput of spontaneous Raman spectroscopy for cell identification applications is limited to the range of one cell per second because of the relatively low sensitivity. Surface-enhanced Raman scattering (SERS) is a widespread way to amplify the intensity of Raman signals by several orders of magnitude and, consequently, to improve the sensitivity and throughput. SERS protocols using immuno-functionalized nanoparticles turned out to be challenging for cell identification because they require complex preparation procedures. Here, a new SERS strategy is presented for cell classification using non-functionalized silver nanoparticles and potassium chloride to induce aggregation. To demonstrate the principle, cell lysates were prepared by ultrasonication that disrupts the cell membrane and enables interaction of released cellular biomolecules to nanoparticles. This approach was applied to distinguish four cell lines – Capan-1, HepG2, Sk-Hep1 and MCF-7 – using SERS at 785 nm excitation. Six independent batches were prepared per cell line to check the reproducibility. Principal component analysis was applied for data reduction and assessment of spectral variations that were assigned to proteins, nucleotides and carbohydrates. Four principal components were selected as input for classification models based on support vector machines. Leave-three-batches-out cross validation recognized four cell lines with sensitivities, specificities and accuracies above 96%. We conclude that this reproducible and specific SERS approach offers prospects for cell identification using easily preparable silver nanoparticles.
  • Item
    Ultrafast in cellulo photoinduced dynamics processes of the paradigm molecular light switch [Ru(bpy)2dppz]2+
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) De la Cadena, Alejandro; Davydova, Dar’ya; Tolstik, Tatiana; Reichardt, Christian; Shukla, Sapna; Akimov, Denis; Heintzmann, Rainer; Popp, Jürgen; Dietzek, Benjamin
    An in cellulo study of the ultrafast excited state processes in the paradigm molecular light switch [Ru(bpy)2dppz]2+ by localized pump-probe spectroscopy is reported for the first time. The localization of [Ru(bpy)2dppz]2+ in HepG2 cells is verified by emission microscopy and the characteristic photoinduced picosecond dynamics of the molecular light switch is observed in cellulo. The observation of the typical phosphorescence stemming from a 3MLCT state suggests that the [Ru(bpy)2dppz]2+ complex intercalates with the DNA in the nucleus. The results presented for this benchmark coordination compound reveal the necessity to study the photoinduced processes in coordination compounds for intracellular use, e.g. as sensors or as photodrugs, in the actual biological target environment in order to derive a detailed molecular mechanistic understanding of the excited-state properties of the systems in the actual biological target environment.