Search Results

Now showing 1 - 2 of 2
  • Item
    Graphene-Like ZnO: A Mini Review
    (Basel : MDPI, 2016) Ta, Huy Q.; Zhao, Liang; Pohl, Darius; Pang, Jinbo; Trzebicka, Barbara; Rellinghaus, Bernd; Pribat, Didier; Gemming, Thomas; Liu, Zhongfan; Bachmatiuk, Alicja; Rümmeli, Mark H.
    The isolation of a single layer of graphite, known today as graphene, not only demonstrated amazing new properties but also paved the way for a new class of materials often referred to as two-dimensional (2D) materials. Beyond graphene, other 2D materials include h-BN, transition metal dichalcogenides (TMDs), silicene, and germanene, to name a few. All tend to have exciting physical and chemical properties which appear due to dimensionality effects and modulation of their band structure. A more recent member of the 2D family is graphene-like zinc oxide (g-ZnO) which also holds great promise as a future functional material. This review examines current progress in the synthesis and characterization of g-ZnO. In addition, an overview of works dealing with the properties of g-ZnO both in its pristine form and modified forms (e.g., nano-ribbon, doped material, etc.) is presented. Finally, discussions/studies on the potential applications of g-ZnO are reviewed and discussed.
  • Item
    Flexible Piezoresistive Polystyrene Composite Sensors Filled with Hollow 3D Graphitic Shells
    (Basel : MDPI, 2023) Guzenko, Nataliia; Godzierz, Marcin; Kurtyka, Klaudia; Hercog, Anna; Nocoń-Szmajda, Klaudia; Gawron, Anna; Szeluga, Urszula; Trzebicka, Barbara; Yang, Ruizhi; Rümmeli, Mark H.
    The objective of this research was to develop highly effective conductive polymer composite (CPC) materials for flexible piezoresistive sensors, utilizing hollow three-dimensional graphitic shells as a highly conductive particulate component. Polystyrene (PS), a cost-effective and robust polymer widely used in various applications such as household appliances, electronics, automotive parts, packaging, and thermal insulation materials, was chosen as the polymer matrix. The hollow spherical three-dimensional graphitic shells (GS) were synthesized through chemical vapor deposition (CVD) with magnesium oxide (MgO) nanoparticles serving as a support, which was removed post-synthesis and employed as the conductive filler. Commercial multi-walled carbon nanotubes (CNTs) were used as a reference one-dimensional graphene material. The main focus of this study was to investigate the impact of the GS on the piezoresistive response of carbon/polymer composite thin films. The distribution and arrangement of GS and CNTs in the polymer matrix were analyzed using techniques such as X-ray diffraction and scanning electron microscopy, while the electrical, thermal, and mechanical properties of the composites were also evaluated. The results revealed that the PS composite films filled with GS exhibited a more pronounced piezoresistive response as compared to the CNT-based composites, despite their lower mechanical and thermal performance.