Search Results

Now showing 1 - 4 of 4
  • Item
    Interfacing optical fibers with plasmonic nanoconcentrators
    (Berlin : de Gruyter, 2018) Tuniz, Alessandro; Schmidt, Markus A.
    The concentration of light to deep-subwavelength dimensions plays a key role in nanophotonics and has the potential to bring major breakthroughs in fields demanding to understand and initiate interaction on nanoscale dimensions, including molecular disease diagnostics, DNA sequencing, single nanoparticle manipulation and characterization, and semiconductor inspection. Although planar metallic nanostructures provide a pathway to nanoconcentration of electromagnetic fields, the delivery/collection of light to/from such plasmonic nanostructures is often inefficient, narrow-band, and requires complicated excitations schemes, limiting widespread applications. Moreover, planar photonic devices reveal a reduced flexibility in terms of bringing the probe light to the sample. An ideal photonic-plasmonic device should combine (i) a high spatial resolution at the nanometre level beyond to what is state-of-the-art in near-field microscopy with (ii) flexible optical fibers to promote a straightforward integration into current near-field scanning microscopes. Here, we review the recent development and main achievements of nanoconcentrators interfacing optical fibers at their end-faces that reach entirely monolithic designs, including campanile probes, gold-coated fiber-taper nanotips, and fiber-integrated gold nanowires.
  • Item
    Direct observation of modal hybridization in nanofluidic fiber [Invited]
    (Washington, DC : OSA, 2021) Gomes, André D.; Zhao, Jiangbo Tim; Tuniz, Alessandro; Schmidt, Markus A.
    Hybrid-material optical fibers enhance the capabilities of fiber-optics technologies, extending current functionalities to several emerging application areas. Such platforms rely on the integration of novel materials into the fiber core or cladding, thereby supporting hybrid modes with new characteristics. Here we present experiments that reveal hybrid mode interactions within a doped-core silica fiber containing a central high-index nanofluidic channel. Compared with a standard liquid-filled capillary, calculations predict modes with unique properties emerging as a result of the doped core/cladding interface, possessing a high power fraction inside and outside the nanofluidic channel. Our experiments directly reveal the beating pattern in the fluorescent liquid resulting from the excitation of the first two linearly polarized hybrid modes in this system, being in excellent agreement with theoretical predictions. The efficient excitation and beat of such modes in such an off-resonance situation distinguishes our device from regular directional mode couplers and can benefit applications that demand strong coupling between fundamental- and higher-order- modes, e.g. intermodal third-harmonic generation, bidirectional coupling, and nanofluidic sensing.
  • Item
    Ultrathin niobium nanofilms on fiber optical tapers--a new route towards low-loss hybrid plasmonic modes
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Wieduwilt, Torsten; Tuniz, Alessandro; Linzen, Sven; Goerke, Sebastian; Dellith, Jan; Hübner, Uwe; Schmidt, Markus A.
    Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3–4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices.
  • Item
    Two-dimensional imaging in hyperbolic media-the role of field components and ordinary waves
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Tuniz, Alessandro; Kuhlmey, Boris T.
    We study full vector imaging of two dimensional source fields through finite slabs of media with extreme anisotropy, such as hyperbolic media. For this, we adapt the exact transfer matrix method for uniaxial media to calculate the two dimensional transfer functions and point spread functions for arbitrary vector fields described in Cartesian coordinates. This is more convenient for imaging simulations than the use of the natural, propagation direction-dependent TE/TM basis and clarifies which field components contribute to sub-diffraction imaging. We study the effect of ordinary waves on image quality, which previous one-dimensional approaches could not consider. Perfect sub-diffraction imaging can be achieved if longitudinal fields are measured, but in the more common case where field intensities or transverse fields are measured, ordinary waves cause artefacts. These become more prevalent when attempting to image large objects with high resolution. We discuss implications for curved hyperbolic imaging geometries such as hyperlenses.