Search Results

Now showing 1 - 4 of 4
  • Item
    Lithium metal penetration induced by electrodeposition through solid electrolytes: Example in single-crystal Li6La3ZrTaO12 garnet
    (Pennington, NJ : Electrochemical Society, 2018) Swamy, Tushar; Park, Richard; Sheldon, Brian W.; Rettenwander, Daniel; Porz, Lukas; Berendts, Stefan; Uecker, Reinhard; Carter, W. Craig; Chiang, Yet-Ming
    Solid electrolytes potentially enable rechargeable batteries with lithium metal anodes possessing higher energy densities than today’s lithium ion batteries. To do so the solid electrolyte must suppress instabilities that lead to poor coulombic efficiency and short circuits. In this work, lithium electrodeposition was performed on single-crystal Li6La3ZrTaO12 garnets to investigate factors governing lithium penetration through brittle electrolytes. In single crystals, grain boundaries are excluded as paths for lithium metal propagation. Vickers microindentation was used to introduce surface flaws of known size. However, operando optical microscopy revealed that lithium metal penetration propagates preferentially from a different, second class of flaws. At the perimeter of surface current collectors smaller in size than the lithium source electrode, an enhanced electrodeposition current density causes lithium filled cracks to initiate and grow to penetration, even when large Vickers defects are in proximity. Modeling the electric field distribution in the experimental cell revealed that a 5-fold enhancement in field occurs within 10 micrometers of the electrode edge and generates high local electrochemomechanical stress. This may determine the initiation sites for lithium propagation, overriding the presence of larger defects elsewhere.
  • Item
    Adsorption-controlled growth of La-doped BaSnO3 by molecular-beam epitaxy
    (Melville, NY : AIP Publ., 2017) Paik, Hanjong; Chen, Zhen; Lochocki, Edward; Seidner H., Ariel; Verma, Amit; Tanen, Nicholas; Park, Jisung; Uchida, Masaki; Shang, ShunLi; Zhou, Bi-Cheng; Brützam, Mario; Uecker, Reinhard; Liu, Zi-Kui; Jena, Debdeep; Shen, Kyle M.; Muller, David A.; Schlom, Darrell G.
    Epitaxial La-doped BaSnO3 films were grown in an adsorption-controlled regime by molecular-beam epitaxy, where the excess volatile SnOx desorbs from the film surface. A film grown on a (001) DyScO3 substrate exhibited a mobility of 183 cm2 V-1 s-1 at room temperature and 400 cm2 V-1 s-1 at 10 K despite the high concentration (1.2 × 1011 cm-2) of threading dislocations present. In comparison to other reports, we observe a much lower concentration of (BaO)2 Ruddlesden-Popper crystallographic shear faults. This suggests that in addition to threading dislocations, other defects - possibly (BaO)2 crystallographic shear defects or point defects - significantly reduce the electron mobility.
  • Item
    Strain engineering of ferroelectric domains in KxNa1−xNbO3 epitaxial layers
    (Lausanne : Frontiers Media, 2017) Schwarzkopf, Jutta; Braun, Dorothee; Hanke, Michael; Uecker, Reinhard; Schmidbauer, Martin
    The application of lattice strain through epitaxial growth of oxide films on lattice mismatched perovskite-like substrates strongly influences the structural properties of ferroelectric domains and their corresponding piezoelectric behavior. The formation of different ferroelectric phases can be understood by a strain-phase diagram, which is calculated within the framework of the Landau–Ginzburg–Devonshire theory. In this paper, we illustrate the opportunity of ferroelectric domain engineering in the KxNa1−xNbO3 lead-free material system. In particular, the following examples are discussed in detail: (i) Different substrates (NdGaO3, SrTiO3, DyScO3, TbScO3, and GdScO3) are used to systematically tune the incorporated epitaxial strain from compressive to tensile. This can be exploited to adjust the NaNbO3 thin film surface orientation and, concomitantly, the vector of electrical polarization, which rotates from mainly vertical to exclusive in-plane orientation. (ii) In ferroelectric NaNbO3, thin films grown on rare-earth scandate substrates, highly regular stripe domain patterns are observed. By using different film thicknesses, these can be tailored with regard to domain periodicity and vertical polarization component. (iii) A featured potassium concentration of x = 0.9 of KxNa1−xNbO3 thin films grown on (110) NdScO3 substrates favors the coexistence of two equivalent, monoclinic, but differently oriented ferroelectric phases. A complicated herringbone domain pattern is experimentally observed which consists of alternating MC and a1a2 domains. The coexistence of different types of ferroelectric domains leads to polarization discontinuities at the domain walls, potentially enabling high piezoelectric responses. In each of these examples, the experimental results are in excellent agreement with predictions based on the linear elasticity theory.
  • Item
    The electronic structure and the formation of polarons in Mo-doped BiVO4 measured by angle-resolved photoemission spectroscopy
    (London : RSC Publishing, 2019) Mohamed, Mansour; May, Matthias M.; Kanis, Michael; Brützam, Mario; Uecker, Reinhard; van de Krol, Roel; Janowitz, Christoph; Mulazzi, Mattia
    We experimentally investigated the electronic structure of Mo-doped BiVO4 high-quality single-crystals with synchrotron radiation-excited angle-resolved photoelectron spectroscopy (ARPES). By photon-energy dependent ARPES, we measured the bulk-derived valence band dispersion along the direction normal to the (010) cleavage plane, while the dispersion along the in-plane directions is obtained by angle-dependent measurements at fixed photon energy. Our data show that the valence band has a width of about 4.75 eV and is composed of many peaks, the two most intense have energies in good agreement with the theoretically calculated ones. A non-dispersive feature is observed in the fundamental gap, which we attribute to quasiparticle excitations coupling electrons and phonons, i.e. polarons. The determination of the polaron peak binding energy and bulk band gap allows to fix the value of the theoretical mixing parameter necessary in hybrid Hartree–Fock calculations to reproduce the experimental data. The attribution of the in-gap peak to polarons is strengthened by our discussion in the context of experimental transport data and ab initio theory.