Search Results

Now showing 1 - 8 of 8
  • Item
    Tuning of Smart Multifunctional Polymer Coatings Made by Zwitterionic Phosphorylcholines
    (Weinheim : Wiley-VCH, 2020) Münch, Alexander S.; Adam, Stefan; Fritzsche, Tina; Uhlmann, Petra
    In the last years, the generation of multifunctional coatings has been moved into the focus of interface modifications to expand the spectrum of material applications and to introduce new smart properties. Herein a promising multifunctional and universally usable coating with simultaneous antifouling, easy-to-clean, and anti-fog functionality is presented based on smart polymer films consisting of copolymers with 2-methacryloyloxyethyl phosphorylcholine (MPC), realizing the function of the film and photoreactive 4-benzophenyl methacrylate (BPO), which is responsible for stability and crosslinking. The easy-to-clean effect is demonstrated qualitatively and quantitatively by oil droplet detachment experiments. The antifouling behavior against different germs is investigated by cell adhesion experiments. Furthermore the anti-fog performance is shown by breathing on the surfaces. To study the influence of the different amounts of copolymerized BPO, the grafted films are characterized by atomic force microscopy (AFM), infrared spectroscopy (ATR-FTIR), as well as contact angle measurements. In situ spectroscopic ellipsometry is performed to investigate the swelling behavior of the thin films as a function of the time of UV-irradiation. It is found that a degree of swelling of 15 and a water contact angle of less than 12° are the key parameters necessary for the generation of multifunctional coatings. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Constrained thermoresponsive polymers - new insights into fundamentals and applications
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2021) Flemming, Patricia; Münch, Alexander S.; Fery, Andreas; Uhlmann, Petra
    In the last decades, numerous stimuli-responsive polymers have been developed and investigated regarding their switching properties. In particular, thermoresponsive polymers, which form a miscibility gap with the ambient solvent with a lower or upper critical demixing point depending on the temperature, have been intensively studied in solution. For the application of such polymers in novel sensors, drug delivery systems or as multifunctional coatings, they typically have to be transferred into specific arrangements, such as micelles, polymer films or grafted nanoparticles. However, it turns out that the thermodynamic concept for the phase transition of free polymer chains fails, when thermoresponsive polymers are assembled into such sterically confined architectures. Whereas many published studies focus on synthetic aspects as well as individual applications of thermoresponsive polymers, the underlying structure-property relationships governing the thermoresponse of sterically constrained assemblies, are still poorly understood. Furthermore, the clear majority of publications deals with polymers that exhibit a lower critical solution temperature (LCST) behavior, with PNIPAAM as their main representative. In contrast, for polymer arrangements with an upper critical solution temperature (UCST), there is only limited knowledge about preparation, application and precise physical understanding of the phase transition. This review article provides an overview about the current knowledge of thermoresponsive polymers with limited mobility focusing on UCST behavior and the possibilities for influencing their thermoresponsive switching characteristics. It comprises star polymers, micelles as well as polymer chains grafted to flat substrates and particulate inorganic surfaces. The elaboration of the physicochemical interplay between the architecture of the polymer assembly and the resulting thermoresponsive switching behavior will be in the foreground of this consideration.
  • Item
    Amphiphilic block copolymer micelles in selective solvents: The effect of solvent selectivity on micelle formation
    (Basel : MDPI, 2019) Kumar, Labeesh; Horechyy, Andriy; Bittrich, Eva; Nandan, Bhanu; Uhlmann, Petra; Fery, Andreas
    We investigated the micellar behavior of a series of asymmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers in different P4VP-selective alcoholic solvents. The micellar behavior was further correlated with the spectroscopic ellipsometry results obtained on swelling of PS and P4VP polymer films in the corresponding solvent vapors. The time-resolved (in situ) dynamic light scattering (DLS) measurements, in combination with (ex situ) electron microscopy imaging, revealed information about the aggregation state of PS-b-P4VP BCP in different alcohols and the effect of heat treatment. The ellipsometry measurements allowed us to estimate the difference in solvent selectivity toward PS/P4VP pair. Both DLS and ellipsometric studies suggested that less polar alcohols (i.e., 1-propanol, 1-butanol, and 1-pentanol) are likely to be close to each other in terms of their selectivity toward PS/P4VP pair, whereas more polar ethanol and methanol show the highest and the lowest affinity toward P4VP, respectively.
  • Item
    In Situ Monitoring of Linear RGD-Peptide Bioconjugation with Nanoscale Polymer Brushes
    (Washington, DC : ACS Publications, 2017) Psarra, Evmorfia; König, Ulla; Müller, Martin; Bittrich, Eva; Eichhorn, Klaus-Jochen; Welzel, Petra B.; Stamm, Manfred; Uhlmann, Petra
    Bioinspired materials mimicking the native extracellular matrix environment are promising for biotechnological applications. Particularly, modular biosurface engineering based on the functionalization of stimuli-responsive polymer brushes with peptide sequences can be used for the development of smart surfaces with biomimetic cues. The key aspect of this study is the in situ monitoring and analytical verification of the biofunctionalization process on the basis of three complementary analytical techniques. In situ spectroscopic ellipsometry was used to quantify the amount of chemisorbed GRGDS at both the homopolymer poly(acrylic acid) (PAA) brush and the binary poly(N-isopropylacrylamide) (PNIPAAm)-PAA brushes, which was finally confirmed by an acidic hydrolysis combined with a subsequent reverse-phase high-performance liquid chromatography analysis. In situ attenuated total reflection-Fourier transform infrared spectroscopy provided a step-by-step detection of the biofunctionalization process so that an optimized protocol for the bioconjugation of GRGDS could be identified. The optimized protocol was used to create a temperature-responsive binary brush with a high amount of chemisorbed GRGDS, which is a promising candidate for the temperature-sensitive control of GRGDS presentation in further cell-instructive studies.
  • Item
    Stretchable Thin Film Mechanical-Strain-Gated Switches and Logic Gate Functions Based on a Soft Tunneling Barrier
    (Weinheim : Wiley-VCH, 2021) Chae, Soosang; Choi, Won Jin; Fotev, Ivan; Bittrich, Eva; Uhlmann, Petra; Schubert, Mathias; Makarov, Denys; Wagner, Jens; Pashkin, Alexej; Fery, Andreas
    Mechanical-strain-gated switches are cornerstone components of material-embedded circuits that perform logic operations without using conventional electronics. This technology requires a single material system to exhibit three distinct functionalities: strain-invariant conductivity and an increase or decrease of conductivity upon mechanical deformation. Herein, mechanical-strain-gated electric switches based on a thin-film architecture that features an insulator-to-conductor transition when mechanically stretched are demonstrated. The conductivity changes by nine orders of magnitude over a wide range of tunable working strains (as high as 130%). The approach relies on a nanometer-scale sandwiched bilayer Au thin film with an ultrathin poly(dimethylsiloxane) elastomeric barrier layer; applied strain alters the electron tunneling currents through the barrier. Mechanical-force-controlled electric logic circuits are achieved by realizing strain-controlled basic (AND and OR) and universal (NAND and NOR) logic gates in a single system. The proposed material system can be used to fabricate material-embedded logics of arbitrary complexity for a wide range of applications including soft robotics, wearable/implantable electronics, human-machine interfaces, and Internet of Things.
  • Item
    In-situ-investigation of enzyme immobilization on polymer brushes
    (Lausanne : Frontiers Media, 2019) Koenig, Meike; König, Ulla; Eichhorn, Klaus-Jochen; Müller, Martin; Stamm, Manfred; Uhlmann, Petra
    Herein, we report on the use of a combined setup of quartz-crystal microbalance, with dissipation monitoring and spectroscopic ellipsometry, to comprehensively investigate the covalent immobilization of an enzyme to a polymer layer. All steps of the covalent reaction of the model enzyme glucose oxidase with the poly(acrylic acid) brush by carbodiimide chemistry, were monitored in-situ. Data were analyzed using optical and viscoelastic modeling. A nearly complete collapse of the polymer chains was found upon activation of the carboxylic acid groups with N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide and N-Hydroxysuccinimide. The reaction with the amine groups of the enzyme occurs simultaneously with re-hydration of the polymer layer. Significantly more enzyme was immobilized on the surface compared to physical adsorption at similar conditions, at the same pH. It was found that the pH responsive swelling behavior was almost not affected by the presence of the enzyme. © 2019 Koenig, König, Eichhorn, Müller, Stamm and Uhlmann.
  • Item
    Free polyethylenimine enhances substrate-mediated gene delivery on titanium substrates modified with RGD-functionalized poly(acrylic acid) brushes
    (Lausanne : Frontiers Media, 2019) Mantz, Amy; Rosenthal, Alice; Farris, Eric; Kozisek, Tyler; Bittrich, Eva; Nazari, Saghar; Schubert, Eva; Schubert, Mathias; Stamm, Manfred; Uhlmann, Petra; Pannier, Angela K.
    Substrate mediated gene delivery (SMD) is a method of immobilizing DNA complexes to a substrate via covalent attachment or nonspecific adsorption, which allows for increased transgene expression with less DNA compared to traditional bolus delivery. It may also increase cells receptivity to transfection via cell-material interactions. Substrate modifications with poly(acrylic) acid (PAA) brushes may improve SMD by enhancing substrate interactions with DNA complexes via tailored surface chemistry and increasing cellular adhesion via moieties covalently bound to the brushes. Previously, we described a simple method to graft PAA brushes to Ti and further demonstrated conjugation of cell adhesion peptides (i.e., RGD) to the PAA brushes to improve biocompatibility. The objective of this work was to investigate the ability of Ti substrates modified with PAA-RGD brushes (PAA-RGD) to immobilize complexes composed of branched polyethyleneimine and DNA plasmids (bPEI-DNA) and support SMD in NIH/3T3 fibroblasts. Transfection in NIH/3T3 cells cultured on bPEI-DNA complexes immobilized onto PAA-RGD substrates was measured and compared to transfection in cells cultured on control surfaces with immobilized complexes including Flat Ti, PAA brushes modified with a control peptide (RGE), and unmodified PAA. Transfection was two-fold higher in cells cultured on PAA-RGD compared to those cultured on all control substrates. While DNA immobilization measured with radiolabeled DNA indicated that all substrates (PAA-RGD, unmodified PAA, Flat Ti) contained nearly equivalent amounts of loaded DNA, ellipsometric measurements showed that more total mass (i.e., DNA and bPEI, both complexed and free) was immobilized to PAA and PAA-RGD compared to Flat Ti. The increase in adsorbed mass may be attributed to free bPEI, which has been shown to improve transfection. Further transfection investigations showed that removing free bPEI from the immobilized complexes decreased SMD transfection and negated any differences in transfection success between cells cultured on PAA-RGD and on control substrates, suggesting that free bPEI may be beneficial for SMD in cells cultured on bPEI-DNA complexes immobilized on PAA-RGD grafted to Ti. This work demonstrates that substrate modification with PAA-RGD is a feasible method to enhance SMD outcomes on Ti and may be used for future applications such as tissue engineering, gene therapy, and diagnostics. © 2019 Mantz, Rosenthal, Farris, Kozisek, Bittrich, Nazari, Schubert, Schubert, Stamm, Uhlmann and Pannier.
  • Item
    Heterogeneous freezing on pyroelectric poly(vinylidene fluoride-co-trifluoroethylene) thin films
    (Chichester [u.a.] : Wiley, 2020) Apelt, Sabine; Höhne, Susanne; Uhlmann, Petra; Bergmann, Ute
    Active deicing of technical surfaces, such as for wind turbines and heat exchangers, currently requires the usage of heat or chemicals. Passive coating strategies that postpone the freezing of covering water would be beneficial in order to save costs and energy. One hypothesis is that pyroelectric active materials can achieve this because of the surface charges generated on these materials when they are subject to a temperature change. High-quality poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) thin films with a high crystallinity, prefererd edge-on orientation, low surface roughness, and comprised of the β-analogous ferroelectric phase were deposited by spin-coating. Freezing experiments with a cooling rate of 1 K min−1 were made on P(VDF-TrFE) coatings in order to separate the effect of different parameters such as the poling direction, film thickness, used solvent, deposition process, underlying substrate, and annealing temperature on the achievable supercooling. The topography and the underlying substrate significantly changed the distribution of freezing temperatures of water droplets in contact with these thin films. In contrast, no significant effect of the thickness, morphology, or pyroelectric effect of the as-prepared domain-state on the freezing temperatures was found.