Search Results

Now showing 1 - 2 of 2
  • Item
    Determination of Cr Density in the Active Phase of a High-current Vacuum Arcs
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2017) Gortschakow, S.; Khakpour, A.; Popov, S.; Franke, S.; Methling, R.; Uhrlandt, D.
    Melting and evaporation of the anode surface strongly influence the interruption capability of vacuum circuit breakers, because they lead to injection of atomic vapour into the inter-electrode gap. Determination of the vapour density and its dynamics with respect to different anode phenomena is therefore of great importance. Results of Cr density measurements in a high-current vacuum arc by using broadband absorption spectroscopy are presented. The vapour density of atomic Cr is determined after the formation of anode spots as well as close to the current zero. Cr I resonance lines at 425.43 nm have been used for the analysis. An AC current pulse with maximum value of 7 kA and a frequency of 100 Hz is applied to a vacuum arc between two cylindrical butt electrodes made of CuCr7525 with a diameter of 10 mm. The high-current anode modes are observed by means of high-speed camera imaging. The temporal evolution of the Cr ground state density is presented and discussed.
  • Item
    Emission Spectroscopy During High-Current Anode Modes in Vacuum Arc
    (Praha : Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Physics, 2017) Khakpour, A.; Methling, R.; Franke, S.; Gortschakow, S.; Uhrlandt, D.
    A vacuum interrupter reaches its interruption limit once high-current anode phenomena occur. High-current anode modes lead to an increase of the anode surface temperature and an increased generation of metal vapor, which may result in a weakening of the dielectric recovery strength after current zero. In this work, different discharge modes in a vacuum arc for AC 50 Hz including diffuse, footpoint, anode spot type 1 and type 2, and anode plume are investigated. Electrodes made of CuCr7525 with diameter of 10 mm are used. The final gap length is about 20 mm. Time and space resolved optical emission spectroscopy is used to examine the temporal and spatial distribution of atomic and ionic copper lines. The distribution of atomic and ionic lines parallel and perpendicular to the anode surface is investigated. Radiator density is also determined for CuI, CuII, and CuIII near the anode surface.