Search Results

Now showing 1 - 2 of 2
  • Item
    Assessing the organic fraction of municipal solid wastes for the production of lactic acid
    (Amsterdam [u.a.] : Elsevier, 2019) López-Gómez, J. Pablo; Latorre-Sánchez, Marcos; Unger, Peter; Schneider, Roland; Coll Lozano, Caterina; Venus, Joachim
    With an estimated yearly production of about 140 Mt in the EU, conventionally, the organic fraction of municipal solid wastes (OFMSW) has been disposed in landfills with negative environmental effects. Nonetheless, the chemical composition of this residue make it a substrate with great bioconversion potential. In this study, OFMSW from Spanish municipal treatment plants, were evaluated for the production of LA. Samples were identified according to the sorting mechanisms employed for their collection in: (A) separately collected, (B) non-separately collected and (C) separately collected+paper/cardboard. Enzymatic hydrolysis was used to produce hydrolysates A, B and C accordingly. Hydrolysate A showed the highest total sugars and glucose content with values of 70 and 55 g·L−1, respectively. Following the characterisation, a screening showed that growth of B. coagulans was possible in all three hydrolysates. Furthermore, lab scale fermentations showed that LA final concentrations could reach around 60 g·L−1, with yields from total sugars of above 0.60 g·g−1. A technical scale fermentation of the hydrolysate A resulted in a final LA concentration of 60.7 g·L−1, a yield of 0.71 g·g−1 with a productivity of 2.68 g·L−1·h−1. Overall, it was estimated that 0.23 g of LA could be produced from one g of dry OFMSW.
  • Item
    Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales
    (Amsterdam : Elsevier, 2016) Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim
    In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121 °C for 30 min in presence of 0.18 mol L−1 H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (g L−1) glucose (20–30), xylose (15–25), sucrose (5–11) and arabinose (0.7–10). Fermentations were carried out at laboratory (2 L) and pilot (50 L) scales in presence of 10 g L−1 yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78 g g−1, respectively. The productivity was 4.02 g L−1 h−1. Downstream processing resulted in a pure formulation containing 937 g L−1 l(+)-lactic acid with an optical purity of 99.7%.