Search Results

Now showing 1 - 2 of 2
  • Item
    Efficient blood flow simulations for the design of stented valve reducer in enlarged ventricular outflow tracts
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Caiazzo, Alfonso; Guibert, Romain; Boudjemline, Younes; Vignon-Clementel, Irene E.
    Tetralogy of Fallot is a congenital heart disease characterized over time, after the initial repair, by the absence of a functioning pulmonary valve, which causes regurgitation, and by progressive enlargement of the right ventricle and pulmonary arteries. Due to this pathological anatomy, available transcatheter valves are usually too small to be deployed in the enlarged right ventricular outflow tracts (RVOT). To avoid surgical valve replacement, an alternative consists in implanting a reducer prior to or in combination with a transcatheter valve. We describe a computational model to study the effect of a stented valve RVOT reducer on the hemodynamics in enlarged ventricular outflow tracts. To this aim, blood flow in the right ventricular outflow tract is modeled via the incompressible Navier--Stokes equations coupled to a simplified valve model, numerically solved with a standard finite element method and with a reduced order model based on Proper Orthogonal Decomposition (POD). Numerical simulations are based on a patient geometry obtained from medical imaging and boundary conditions tuned according to measurements of inlet flow rates and pressures. Different geometrical models of the reducer are built, varying its length and/or diameter, and compared with the initial device-free state. Simulations thus investigate multiple device configurations and describe the effect of geometry on hemodynamics. Forces exerted on the valve and on the reducer are monitored, varying with geometrical parameters. Results support the thesis that the reducer does not introduce significant pressure gradients, as was found in animal experiments. Finally, we demonstrate how computational complexity can be reduced with POD.
  • Item
    A reduced-order modeling for efficient design study of artificial valve in enlarged ventricular outflow tracts
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Caiazzo, Alfonso; Guibert, Romain; Vignon-Clementel, Irene E.
    A computational approach is proposed for efficient design study of a reducer stent to be percutaneously implanted in enlarged right ventricular outflow tracts (RVOT). The need for such a device is driven by the absence of bovine or artificial valves which could be implanted in these RVOT to replace the absent or incompetent native valve, as is often the case over time after Tetralogy of Fallot repair. Hemodynamics are simulated in the stented RVOT via a reduce order model based on proper orthogonal decomposition (POD), while the artificial valve is modeled as a thin resistive surface. The reduced order model is obtained from the numerical solution on a reference device configuration, then varying the geometrical parameters (diameter) for design purposes. To validate the approach, forces exerted on the valve and on the reducer are monitored, varying with geometrical parameters, and compared with the results of full CFD simulations. Such an approach could also be useful for uncertainty quantification. Device design, percutaneous pulmonary valve replacement, proper orthogonal decomposition (POD), finite element method, blood flow CFD, repaired Tetralogy of Fallot.