Search Results

Now showing 1 - 5 of 5
  • Item
    Convective Nozaki-Bekki holes in a long cavity OCT laser
    (Washington, DC : Soc., 2019) Slepneva, Svetlana; O'Shaughnessy, Ben; Vladimirov, Andrei G.; Rica, Sergio; Viktorov, Evgeny A.; Huyet, Guillaume
    We show, both experimentally and theoretically, that the loss of coherence of a long cavity optical coherence tomography (OCT) laser can be described as a transition from laminar to turbulent flows. We demonstrate that in this strongly dissipative system, the transition happens either via an absolute or a convective instability depending on the laser parameters. In the latter case, the transition occurs via formation of localised structures in the laminar regime, which trigger the formation of growing and drifting puffs of turbulence. Experimentally, we demonstrate that these turbulent bursts are seeded by appearance of Nozaki-Bekki holes, characterised by the zero field amplitude and π phase jumps. Our experimental results are supported with numerical simulations based on the delay differential equations model.
  • Item
    Broadening of mode-locking pulses in quantum-dot semiconductor lasers : simulation, analysis and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Radziunas, Mindaugas; Vladimirov, Andrei G.; Viktorov, Evgeny A.; Fiol, Gerrit; Schmeckebier, Holger; Bimberg, Dieter
    We consider a mode-locked quantum-dot edge-emitting semiconductor laser consisting of a reverse biased saturable absorber and a forward biased amplifying section. To describe the dynamics of this laser we use the traveling wave model taking into account carrier exchange processes between a reservoir and the quantum dots. A comprehensive parameter study is presented and an analysis of mode-locking pulse broadening with an increase of injection current is performed. The results of our theoretical analysis are supported by experimental data demonstrating a strong pulse asymmetry in a monolithic two section quantum dot mode-locked laser
  • Item
    Turbulent coherent structures in a long cavity semiconductor laser near the lasing threshold
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Gowda, Uday; Roche, Amy; Pimenov, Alexander; Vladimirov, Andrei G.; Slepneva, Svetlana; Viktorov, Evgeny A.; Huyet, Guillaume
    We report on the formation of novel turbulent coherent structures in a long cavity semiconductor laser near the lasing threshold. Experimentally, the laser emits a series of power dropouts within a roundtrip and the number of dropouts per series depends on a set of parameters including the bias current. At fixed parameters, the drops remain dynamically stable, repeating over many roundtrips. By reconstructing the laser electric field in the case where the laser emits one dropout per round trip and simulating its dynamics using a time-delayed model, we discuss the reasons for long-term sustainability of these solutions. We suggest that the observed dropouts are closely related to the coherent structures of the cubic complex Ginzburg-Landau equation.
  • Item
    Dynamical regimes in a class A model of a nonlinear mirror mode-locked laser
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Vladimirov, Andrei G.; Kovalev, Anton V.; Viktorov, Evgeny A.; Rebrova, Natalia; Huyet, Guillaume
    Using a simple delay differential equation model we study theoretically the dynamics of a unidirectional class-A ring laser with a nonlinear amplifying loop mirror. We perform analytical linear stability analysis of the CW regimes in the large delay limit and demonstrate that these regimes can be destabilized via modulational and Turing-type instabilities, as well as by a bifurcation leading to the appearance of square-waves. We investigate the formation of square-waves and mode-locked pulses in the system. We show that mode-locked pulses are very asymmetric with exponential decay of the trailing and superexponential growth of the leading edge. We discuss asymmetric interaction of these pulses leading to a formation of harmonic mode-locked regimes.
  • Item
    Strong asymmetry of mode-locking pulses in quantum-dot semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Radziunas, Mindaugas; Vladimirov, Andrei G.; Viktorov, Evgeny A.; Fiol, Gerrit; Schmeckebier, Holger; Birnmberg, Dieter
    We describe the formation of a strong pulse asymmetry in mode-locked quantum-dot edge-emitting two-section semiconductor lasers. A mode decomposition technique reveals the role of the superposition of different modal groups. The results of theoretical analysis are supported by experimental data.