Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Designing Gallium-Containing Hydroxyapatite Coatings on Low Modulus Beta Ti-45Nb Alloy

2023, Vishnu, Jithin, Voss, Andrea, Hoffmann, Volker, Alberta, Ludovico Andrea, Akman, Adnan, Shankar, Balakrishnan, Gebert, Annett, Calin, Mariana

Low-modulus β-type Ti-45Nb alloy is a promising implant material due to its good mechanical biocompatibility, non-toxicity, and outstanding corrosion resistance. Its excellent chemical stability brings new challenges to chemical surface modification treatments, which are indispensable for both osteogenesis and antibacterial performance. Coatings containing metal ions as anti-microbial agents can be an effective way to reduce implant-associated infections caused by bacterial biofilm. Gallium ion (Ga3+) has the potential to reduce bacterial viability and biofilm formation on implant surfaces. In this study, a novel two-step process has been proposed for Ga3+ incorporation in hydroxyapatite (HAP) to develop bioactive and antibacterial surfaces on Ti-45Nb alloy. For the generation of bioactive surface states, HAP electrodeposition was conducted, followed by wet chemical immersion treatments in gallium nitrate (1 mM). Different buffers such as phosphate, sodium bicarbonate, ammonium acetate, and citrate were added to the solution to maintain a pH value in the range of 6.5–6.9. Coating morphology and HAP phases were retained after treatment with gallium nitrate, and Ga3+ ion presence on the surface up to 1 wt.% was confirmed. Combining Ga and HAP shows great promise to enable the local delivery of Ga3+ ions and consequent antibacterial protection during bone regeneration, without using growth factors or antibiotics.

Loading...
Thumbnail Image
Item

Tribocorrosion behavior of β-type Ti-Nb-Ga alloys in a physiological solution

2023, Alberta, Ludovico Andrea, Vishnu, Jithin, Douest, Yohan, Perrin, Kevin, Trunfio-Sfarghiu, Ana-Maria, Courtois, Nicolas, Gebert, Annett, Ter-Ovanessian, Benoit, Calin, Mariana

Tribo-electrochemical behavior in physiological solution of two β-type (100-x)(Ti-45Nb)-xGa (x = 4, 8 wt%) alloys, alongside β-Ti-45Nb and medical grade Ti-6Al-4V ELI, was investigated. Microstructure and mechanical behavior were evaluated by X-ray diffraction, microhardness and ultrasonic method. Tribocorrosion tests (open circuit potential, anodic potentiostatic tests) were performed using a reciprocating pin-on-disk tribometer under constant load. Degradation mechanisms are similar for the alloys: plastic deformation, delamination, abrasive and adhesive wear. Among the β-Ti-Nb alloys, an improved wear resistance with lower damage was remarked for β-92(Ti-45Nb)-8Ga alloy, attributed to increased microhardness. Content of Ga3+ ions released in the test solutions were found to be in very low amounts (few ppb). Addition of Ga to Ti-45Nb resulted in improved corrosion resistance under mechanical loading.