Search Results

Now showing 1 - 2 of 2
  • Item
    Temporal cavity solitons in a delayed model of a dispersive cavity ring laser
    (Les Ulis : EDP Sciences, 2020) Pimenov, Alexander; Amiranashvili, Shalva; Vladimirov, Andrei G.; Eleuteri, Michela; Krejčí, Pavel; Rachinskii, Dmitrii
    Nonlinear localised structures appear as solitary states in systems with multistability and hysteresis. In particular, localised structures of light known as temporal cavity solitons were observed recently experimentally in driven Kerr-cavities operating in the anomalous dispersion regime when one of the two bistable spatially homogeneous steady states exhibits a modulational instability. We use a distributed delay system to study theoretically the formation of temporal cavity solitons in an optically injected ring semiconductor-based fiber laser, and propose an approach to derive reduced delay-differential equation models taking into account the dispersion of the intracavity fiber delay line. Using these equations we perform the stability and bifurcation analysis of injection-locked continuous wave states and temporal cavity solitons.
  • Item
    Convective Nozaki-Bekki holes in a long cavity OCT laser
    (Washington, DC : Soc., 2019) Slepneva, Svetlana; O'Shaughnessy, Ben; Vladimirov, Andrei G.; Rica, Sergio; Viktorov, Evgeny A.; Huyet, Guillaume
    We show, both experimentally and theoretically, that the loss of coherence of a long cavity optical coherence tomography (OCT) laser can be described as a transition from laminar to turbulent flows. We demonstrate that in this strongly dissipative system, the transition happens either via an absolute or a convective instability depending on the laser parameters. In the latter case, the transition occurs via formation of localised structures in the laminar regime, which trigger the formation of growing and drifting puffs of turbulence. Experimentally, we demonstrate that these turbulent bursts are seeded by appearance of Nozaki-Bekki holes, characterised by the zero field amplitude and π phase jumps. Our experimental results are supported with numerical simulations based on the delay differential equations model.