Search Results

Now showing 1 - 2 of 2
  • Item
    Delayed feedback control of self-mobile cavity solitons
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Pimenov, Alexander; Vladimirov, Andrei G.; Gurevich, Svetlana V.; Panajotov, Krassimir; Huyet, Guillaume; Tlidi, Mustapha
    Control of the motion of cavity solitons is one the central problems in nonlinear optical pattern formation. We report on the impact of the phase of the time-delayed optical feedback and carrier lifetime on the self-mobility of localized structures of light in broad area semiconductor cavities. We show both analytically and numerically that the feedback phase strongly affects the drift instability threshold as well as the velocity of cavity soliton motion above this threshold. In addition we demonstrate that non-instantaneous carrier response in the semiconductor medium is responsible for the increase in critical feedback rate corresponding to the drift instability.
  • Item
    Timing jitter of passively mode-locked semiconductor lasers subject to optical feedback : a semi-analytic approach
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Jaurigue, Lina; Pimenov, Alexander; Rachinskii, Dmitrii; Schöll, Eckehard; Lüdge, Kathy; Vladimirov, Andrei G.
    We propose a semi-analytical method of calculating the timing fluctuations in modelocked semiconductor lasers and apply it to study the effect of delayed coherent optical feedback on pulse timing jitter in these lasers. The proposed method greatly reduces computation times and therefore allows for the investigation of the dependence of timing fluctuations over greater parameter domains. We show that resonant feedback leads to a reduction in the timing jitter and that a frequency-pulling region forms about the main resonances, within which a timing jitter reduction is observed. The width of these requency pulling regions increases linearly with short feedback delay times. We derive an analytic expression for the timing jitter, which predicts a monotonic decrease in the timing jitter for resonant feedback of increasing delay lengths, when timing jitter effects are fully separated from amplitude jitter effects. For long feedback cavities the decrease in timing jitter scales approximately as 1/tau with the increase of the feedback delay time tau.